
Recursion aware modeling and discovery for hierarchical
software event log analysis (extended)
Leemans, M.; van der Aalst, W.M.P.; van den Brand, M.G.J.

Published in:
arXiv

Published: 17/10/2017

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Leemans, M., van der Aalst, W. M. P., & van den Brand, M. G. J. (2017). Recursion aware modeling and
discovery for hierarchical software event log analysis (extended). arXiv, 1-14. [1710.09323v1].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Jan. 2018

https://pure.tue.nl/en/publications/recursion-aware-modeling-and-discovery-for-hierarchical-software-event-log-analysis-extended(314e6f0a-5c20-4ead-a0b0-834e4a9a7d34).html

Recursion Aware Modeling and Discovery
For Hierarchical Software Event Log Analysis (Ext.)

Technical Report version with guarantee proofs for the discovery algorithms

Maikel Leemans
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: m.leemans@tue.nl

Wil M. P. van der Aalst
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: W.M.P.v.d.Aalst@tue.nl

Mark G. J. van den Brand
Eindhoven University of Technology

Eindhoven, The Netherlands
Email: M.G.J.v.d.Brand@tue.nl

Abstract—This extended paper presents 1) a novel hierarchy
and recursion extension to the process tree model; and 2)
the first, recursion aware process model discovery technique
that leverages hierarchical information in event logs, typically
available for software systems. This technique allows us to
analyze the operational processes of software systems under real-
life conditions at multiple levels of granularity. The work can be
positioned in-between reverse engineering and process mining.
An implementation of the proposed approach is available as a
ProM plugin. Experimental results based on real-life (software)
event logs demonstrate the feasibility and usefulness of the
approach and show the huge potential to speed up discovery
by exploiting the available hierarchy.

Keywords-Reverse Engineering; Process Mining; Recursion
Aware Discovery; Event Log; Hierarchical Event Log; Process
Discovery; Hierarchical Discovery; Hierarchical Modeling

I. INTRODUCTION

System comprehension, analysis, maintenance, and evo-
lution are largely dependent on information regarding the
structure, behavior, operation, and usage of software systems.
To understand the operation and usage of a system, one has
to observe and study the system “on the run”, in its natural,
real-life production environment. To understand and maintain
the (legacy) behavior when design and documentation are
missing or outdated, one can observe and study the system in a
controlled environment using, for example, testing techniques.
In both cases, advanced algorithms and tools are needed to
support a model driven reverse engineering and analysis of
the behavior, operation, and usage. Such tools should be able
to support the analysis of performance (timing), frequency
(usage), conformance and reliability in the context of a behav-
ioral backbone model that is expressive, precise and fits the
actual system. This way, one obtains a reliable and accurate
understanding of the behavior, operation, and usage of the
system, both at a high-level and a fine-grained level.

The above design criteria make process mining a good
candidate for the analysis of the actual software behavior.
Process mining techniques provide a powerful and mature way
to discover formal process models and analyze and improve
these processes based on event log data from the system [46].
Event logs show the actual behavior of the system, and could
be obtained in various ways, like, for example, instrumentation
techniques. Numerous state of the art process mining tech-
niques are readily available and can be used and combined

through the Process Mining Toolkit ProM [53]. In addition,
event logs are backed by the IEEE XES standard [22], [53].

Typically, the run-time behavior of a system is large and
complex. Current techniques usually produce flat models that
are not expressive enough to master this complexity and are
often difficult to understand. Especially in the case of software
systems, there is often a hierarchical, possibly recursive,
structure implicitly reflected by the behavior and event logs.
This hierarchical structure can be made explicit and should be
used to aid model discovery and further analysis.

In this paper, we 1) propose a novel hierarchy and recursion
extension to the process tree model; and 2) define the first,
recursion aware process model discovery technique that lever-
ages hierarchical information in event logs, typically available
for software systems. This technique allows us to analyze
the operational processes of software systems under real-life
conditions at multiple levels of granularity. In addition, the
proposed technique has a huge potential to speed up discovery
by exploiting the available hierarchy. An implementation of
the proposed algorithms is made available via the Statechart
plugin for ProM [30]. The Statechart workbench provides an
intuitive way to discover, explore and analyze hierarchical
behavior, integrates with existing ProM plugins and links back
to the source code in Eclipse.

This paper is organized as follows (see Figure 1). Section II
positions the work in existing literature. Section III presents
formal definitions of the input (event logs) and the proposed
novel hierarchical process trees. In Section IV, we discuss
how to obtain an explicit hierarchical structure. Two proposed
novel, hierarchical process model discovery techniques are
explained in Section V. In Section VI, we show how to filter,
annotate, and visualize our hierarchical process trees. The
approach is evaluated in Section VII using experiments and
a small demo. Section VIII concludes the paper.

Fig. 1. Outline of the paper and our discovery approach.

ar
X

iv
:1

71
0.

09
32

3v
1

 [
cs

.S
E

]
 1

7
O

ct
 2

01
7

TABLE I
COMPARISON OF RELATED TECHNIQUES AND THE EXPRESSIVENESS OF THE RESULTING MODELS, DIVIDED INTO THE GROUPS FROM SECTION II.

Author Technique / Toolkit Input Formalism

Execution Semantics

Model Quality

Aggregate Runs

Frequency Info

Performance Info
Choice

Loop

Concurrency

Hierarchy

Named Submodels

Recursion

St
at

ic
A

na
ly

si
s [45] Tonella Object flow analysis C++ source code UML Interact. - n/a n/a - - - - - - - -

[27] Kollmann Java code structures Java source code UML Collab. - n/a n/a - - - - - - - -
[28] Korshunova CPP2XMI, SQuADT C++ source code UML SD, AD - n/a n/a - - X X - - - -
[40] Rountev Dataflow analysis Java source code UML SD ±1 n/a n/a - - X X - - - -
[4] Amighi Sawja framework Java byte code CFG - n/a n/a - - X X - - - -

D
yn

am
ic

A
na

ly
si

s

[3] Alalfi PHP2XMI Instrumentation UML SD ±1 - - - - - - - - - -
[39] Oechsle JAVAVIS Java debug interface UML SD ±1 - - - - - - X - - -
[11] Briand Meta models / OCL Instrumentation UML SD ±1 - - - - X X - - - -
[10] Briand Meta models / OCL Instrumentation UML SD ±1 - - - - X X X - - -
[29] Labiche Meta models / OCL Instrumentation + source UML SD ±1 - - - - X X - - - -
[44] Systä Shimba Customized debugger SD variant ±1 - - - - X X - - - -
[55] Walkinshaw MINT Log with traces EFSM X X X - - X X - - - -
[8] Beschastnikh CSight Given log, instrument CFSM X X X - - X X X - - -
[1] Ackermann Behavior extraction Monitor network packets UML SD ±1 - X - X X X - - - -
[20] Graham gprof profiler Instrumentation Call graphs - - - - X - - - X X ±8

[17] De Pauw Execution patterns Program Trace Exec. Pattern - - - X - - X - X X X
[7] Beschastnikh Synoptic Log with traces FSM X X X X - X X - - - -
[23] Heule DFAsat Log with traces DFA X X X - - X X - - - -

G
ra

m
m

ar [38] Nevill-Manning Sequitur Symbol sequence Grammar X - - - - - - - X - -
[41] Siyari Lexis Symbol sequence Lexis-DAG X - X - - - - - X - -
[26] Jonyer SubdueGL Symbol Graph Graph Grammar X - - - - X - - X - ±9

Pr
oc

es
s

M
in

in
g

[49] Van der Aalst Alpha algorithm Event Log Petri net X - X X2 X2 X X X - - -
[48] Van der Aalst Theory of Regions Event Log Petri net X - X X2 X2 X X X - - -
[56] Weijters Flexible heuristics miner Event Log Heuristics net X - X X2 X2 X X X - - -
[50] Werf, van der ILP miner Event Log Petri net X X X X2 X2 X X X - - -
[52] Zelst, S. J. van ILP with filtering Event Log Petri net X X X X2 X2 X X X - - -
[47] Alves de Medeiros Genetic Miner Event Log Petri net X X X X2 X2 X X X - - -
[12] Buijs ETM algorithm Event Log Process tree X X X X2 X2 X X X - - -
[35] Leemans S.J.J. Inductive Miner Event Log Process tree X X X X2 X2 X X X - - -
[21] Günther Fuzzy Miner Event Log Fuzzy model - - X X3 - X X4 - X - -
[25] Bose Two-phase discovery Event Log Fuzzy model - - X X3 - X X5 - X - -
[15] Conforti BPMN miner Event Log BPMN X X X ±2 ±2 X X6 X X - -

This paper Recursion Aware Disc. Event Log H. Process tree* X X X X2 X2 X X7 X X X X

1 Formal semantics are available for UML SD variants.
2 Aligning an event log and a process model enables advanced performance,
frequency, and conformance analysis, as described in [2], [35].
3 Various log-based process metrics have been defined which capture different
notions of frequency, significance, and correlation [21].
4 The hierarchy is based on anonymous clusters in the resulting model [21].

5 The hierarchy is based on abstraction patterns over events [24], [25].
6 The hierarchy is based on discovered relations over extra data in the event log.
7 The hierarchy is based on the hierarchical information in the event log.
8 Recursion is detectable as a cycle, but without performance analysis support.
9 Only tail recursion is supported.
* Hierarchical process tree, as introduced in Definition III.3.

II. RELATED WORK

Substantial work has been done on constructing models
from software or example behavior in a variety of research
domains. This section presents a brief comparison of various
approaches and focuses mainly on the design criteria from the
introduction. That is, the approach and tools should provide
a behavioral backbone model that is expressive, precise and
fits the actual system, and ideally should be able to support
at least performance (timing) and frequency (usage) analysis.
Table I summarizes the comparison.

A. Groups and Criteria for Comparison

We have divided the related work into four groups. Static
Analysis utilizes static artifacts like source code files. Dynamic
Analysis utilizes runtime information through instrumentation
or tracing interfaces like debuggers. Grammar Inference relies
on example behavior in the form of abstract symbol sequences.

Process Mining relies on events logs and is in that sense a more
implementation or platform agnostic approach.

For the comparison on design criteria, we define three sets
of features. Firstly, a precise and fit model should: a) have
formal execution semantics, and b) the underlying discovery
algorithm should either guarantee or allow the user to con-
trol the model quality. The quality of a model is typically
measured in terms of metrics like fitness and precision, but
other qualities (e.g., simplicity and generalization) can also
be considered [46]. Fitness expresses the part of the log (c.q.
system behavior) that is represented by the model; precision
expresses the behavior in the model that is present in the
log (c.q. system behavior). Secondly, the model should be
used as the backbone for further analysis. At the very least,
frequency (usage) and performance (timing) analysis should
be supported. In addition, the analysis should be (statistically)
significant, and hence the technique should be able to aggre-
gate information over multiple execution runs. Thirdly, the

model should be expressive and be able to capture the type
of behavior encountered in software system cases. Not only
should branching behavior like choices (e.g., if-then-else) and
loops (e.g., foreach, iterators) be supported, but also hierarchy
and recursion. Furthermore, for hierarchies, meaningful names
for the different submodels are also important.

B. Discussion of the Related Work

In general, static and symbolic analysis of software has
difficulty capturing the actual, dynamic behavior; especially in
the case of dynamic types (e.g., inheritance, dynamic binding,
exception handling) and jumps. In these cases, it is often
favorable to observe the actual system for the behavior. Since
static techniques either unfold or do not explore function calls,
they lack support for recursive behavior. In addition, because
these techniques only look at static artifacts, they lack any
form of timing or usage analysis.

In the area of dynamic analysis, the focus is on obtaining
a rich but flat control flow model. A lot of effort has been
put in enriching models with more accurate choice and loop
information, guards, and other predicates. However, notions
of recursion or preciseness of models, or application of these
models, like for analysis, seems to be largely ignored. The
few approaches that do touch upon performance or frequency
analysis ([1], [17], [20]) do so with models lacking formal
semantics or model quality guarantees.

In contrast to dynamic analysis techniques, grammar infer-
ence approaches are actively looking for repeating sub patterns
(i.e., sources for hierarchies). The used grammars have a strong
formal basis. However, in the grammar inference domain,
abstract symbols are assumed as input, and the notion of
branching behavior (e.g., loops) or analysis is lost.

In the area of process mining, numerous techniques have
been proposed. These techniques have strong roots in Petri
nets, model conversions, and alignment-based analysis [2],
[35] Process mining techniques yield formal models directly
usable for advanced performance, frequency and conformance
analysis. There are only a few techniques in this domain
that touch upon the subject of hierarchies. In [21], [25], a
hierarchy of anonymous clusters is created based on behavioral
abstractions. The hierarchy of anonymous clusters in [15]
is based on functional and inclusion dependency discovery
techniques over extra data in the event log. None of these
techniques yields named submodels or supports recursion.

Process mining techniques rely on event logs for their input.
These event logs can easily be obtained via the same tech-
niques used by dynamic analysis for singular and distributed
systems [34]. Example techniques include, but are not limited
to, Java Agents, Javassist [13], [14], AspectJ [19], AspectC++
[42], AOP++ [57] and the TXL preprocessor [16].

III. DEFINITIONS

Before we explain the proposed discovery techniques, we
first introduce the definitions for our input and internal
representation. We start with some preliminaries in Subsec-
tion III-A. In Subsection III-B we introduce two types of event

logs: “flat” event logs (our input), and hierarchical event logs
(used during discovery). Finally, in Subsection III-C and III-D,
we will discuss the process tree model and our novel extension:
hierarchical process trees. Throughout this paper, we will be
using the program given in Listing 1 as a running example,
and assume we can log the start and end of each method.

1 public class Main {
2 public static void main(int argument) {
3 A inst = input(argument);
4 inst.process(argument);
5 output();
6 }
7 private static A input(int i) { ... }
8 private static void output() { ... }
9 }

10 class A {
11 public void process(int i) { ... }
12 }
13 class B extends A {
14 public void process(int i) {
15 if (i <= 0) {
16 super.process(i);
17 } else {
18 stepPre();
19 process(i - 1);
20 stepPost();
21 }
22 }
23 private void stepPre() { ... }
24 private void stepPost() { ... }
25 }

Listing 1. Running example program code, logged at the method level.

A. Preliminaries

1) Multisets: We denote the set of all multisets over some
set A as B(A). Note that the ordering of elements in a multiset
is irrelevant.

2) Sequences: Given a set X , a sequence over X of
length n is denoted as 〈 a1, . . . , an 〉 ∈ X∗. We define
〈 a1, . . . , an 〉 [i] = ai. The empty sequence is denoted as ε.
Note that the ordering of elements in a sequence is relevant.
We write · to denote sequence concatenation, for example:
〈 a 〉 · 〈 b 〉 = 〈 a, b 〉 , and 〈 a 〉 · ε = 〈 a 〉. We write x�i to
denote sequence (tail) projection, where 〈 a1, a2, . . . , an 〉 �i =
〈 ai, . . . , an 〉. For example: 〈 a, b 〉 �0 = 〈 a, b 〉, 〈 a, b 〉 �1 =
〈 b 〉, and 〈 a, b 〉 �2 = ε. We write � to denote sequence inter-
leaving (shuffle). For example: 〈 a, b 〉�〈 c, d 〉 = { 〈 a, b, c, d 〉 ,
〈 a, c, b, d 〉 , 〈 a, c, d, b 〉 , 〈 c, a, b, d 〉 , 〈 c, a, d, b 〉 , 〈 c, d, a, b 〉 }.

B. Event Logs

1) “Flat” Event Logs: The starting point for any process
mining technique is an event log, a set of events grouped
into traces, describing what happened when. Each trace cor-
responds to an execution of a process; typically representing
an example run in a software context. Various attributes may
characterize events, e.g., an event may have a timestamp,
correspond to an activity, denote a start or end, reference a
line number, is executed by a particular process or thread, etc.

2) Hierarchical Event Logs: A hierarchical event log ex-
tends on a “flat” event log by assigning multiple activities to
events; each activity describes what happened at a different
level of granularity. We assume a “flat” event log as input.
Based on this input, we will create a hierarchical event log for

discovery. For the sake of clarity, we will ignore most event
attributes, and use sequences of activities directly, as defined
below.

Definition III.1 (Hierarchical Event Log):
Let A be a set of activities. Let L ∈ B((A∗)

∗
) be a

hierarchical event log, a multiset of traces. A trace t ∈ L,
with t ∈ (A∗)

∗, is a sequence of events. Each event x ∈ t,
with x ∈ A∗, is described by a sequence of activities, stating
which activity was executed at each level in the hierarchy. y

Consider, for example, the hierarchical event log L =
[〈 〈 g, a 〉 , 〈 g, b 〉 , 〈 c 〉 〉]. This log has one trace, where the
first event is labeled 〈 g, a 〉, the second event is labeled
〈 g, b 〉, and the third event is labeled 〈 c 〉. For the sake of
readability, we will use the following shorthand notation:
L = [〈 g.a, g.b, c 〉]. In this example log, we have two levels
in our hierarchy: the longest event label has length 2, notation:
‖L‖ = 2. Complex behavior, like choices, loops and parallel
(interleaved) behavior, is typically represented in an event log
via multiple (sub)traces, showing the different execution paths.

We write the following to denote hierarchy concatenation:
f. 〈 g.a, g.b, c 〉 = 〈 f.g.a, f.g.b, f.c 〉. We generalize concate-
nation to hierarchical logs: f.L = [f.t | t ∈ L].

We extend sequence projection to hierarchical traces and
logs, such that a fixed length prefix is removed for all events:
〈 g.a, g.b, c 〉 �∗0 = 〈 g.a, g.b, c 〉, 〈 g.a, g.b, c 〉 �∗1 = 〈 a, b 〉,
〈 g.a, g.b, c 〉 �∗2 = ε. For logs: L�∗i = [t�∗i | t ∈ L].

In Table II, an example hierarchical trace is shown. Here,
we used the class plus method name as activities. While
generating logs, one could also include the full package
name (i.e., a canonical name), method parameter signature (to
distinguish overloaded methods), and more.

C. Process Trees
In this subsection, we introduce process trees as a notation

to compactly represent block-structured models. An important
property of block-structured models is that they are sound by
construction; they do not suffer from deadlocks, livelocks, and
other anomalies. In addition, process trees are tailored towards
process discovery and have been used previously to discover
block-structured workflow nets [35]. A process tree describes
a language; an operator describes how the languages of its
subtrees are to be combined.

Definition III.2 (Process Tree):
We formally define process trees recursively. We assume a
finite alphabet A of activities and a set

⊗
of operators to be

given. Symbol τ /∈ A denotes the silent activity.
• a with a ∈ (A ∪ { τ }) is a process tree;
• Let P1, . . . , Pn with n > 0 be process trees and let ⊗ ∈⊗

be a process tree operator, then ⊗(P1, . . . , Pn) is a
process tree.

We consider the following operators for process trees:
→ denotes the sequential execution of all subtrees
× denotes the exclusive choice between one of the subtrees
	 denotes the structured loop of loop body P1 and alterna-

tive loop back paths P2, . . . , Pn (with n ≥ 2)
∧ denotes the parallel (interleaved) execution of all subtrees

y

To describe the semantics of process trees, the language of a
process tree P is defined using a recursive monotonic function
L(P), where each operator ⊗ has a language join function ⊗l:

L(a) = { 〈 a 〉 } for a ∈ A
L(τ) = { ε }

L(⊗(P1, . . . , Pn)) = ⊗l(L(P1), . . . ,L(Pn))

Each operator has its own language join function ⊗l. The
language join functions below are borrowed from [35], [46]:

→l(L1, . . . , Ln) = { t1 · . . . · tn | ∀1 ≤ i ≤ n : ti ∈ Li }
×l(L1, . . . , Ln) =

⋃
1≤i≤n Li

	l(L1, . . . , Ln) = { t1 · t′1 · t2 · t′2 · . . . · tm−1 · t′m−1 · tm
| ∀ i : ti ∈ L1, t′i ∈

⋃
2≤j≤n Lj }

∧l(L1, . . . , Ln) =
{
t′ ∈ (t1 � . . . � tn)

∣∣ ∀1 ≤ i ≤ n : ti ∈ Li

}
Example process trees and their languages:

L(→(a,×(b, c))) = { 〈 a, b 〉 , 〈 a, c 〉 }
L(∧(a, b)) = { 〈 a, b 〉 , 〈 b, a 〉 }

L(∧(a,→(b, c)) = { 〈 a, b, c 〉 , 〈 b, a, c 〉 , 〈 b, c, a 〉 }
L((a, b)) = { 〈 a 〉 , 〈 a, b, a 〉 , 〈 a, b, a, b, a 〉 , . . . }

D. Hierarchical Process Trees

We extend the process tree representation to support hierar-
chical and recursive behavior. We add a new tree operator to
represent a named submodel, and add a new tree leaf to denote
a recursive reference. Figure 2 shows an example model.

Definition III.3 (Hierarchical Process Tree):
We formally define hierarchical process trees recursively. We
assume a finite alphabet A of activities to be given.
• Any process tree is also a hierarchical process tree;
• Let P be a hierarchical process tree, and f ∈ A, then
Of (P) is a hierarchical process tree that denotes the
named subtree, with name f and subtree P ;

• Mf with f ∈ A is a hierarchical process tree. Combined
with a named subtree operator Of , this leaf denotes the
point where we recurse on the named subtree. See also
the language definition below.

y
The semantics of hierarchical process trees are defined

by extending the language function L(P). A recursion at a
leaf Mf is ‘marked’ in the language, and resolved at the level
of the first corresponding named submodel Of . Function ψlf
‘scans’ a single symbol and resolves for marked recursive calls
(see ψl

f (Mf)). Note that via ψlf , the language Olf is defined
recursively and yields a hierarchical, recursive language.

L(Mf) = { 〈Mf 〉 } for f ∈ A
Ol

f (L) = { f.(t′1 · . . . · t′n) | 〈x1, . . . , xn 〉 ∈ L,
∀1 ≤ i ≤ n : t′i ∈ ψl

f (xi) } for f ∈ A
where ψl

f (ε) = { ε }
ψl

f (Mf) =O
l
f (L) for f ∈ A

ψl
f (Mg) = { 〈Mg 〉 } for g 6= f ∧ g ∈ A

ψl
f (a.x) =

{
a.(t′)

∣∣∣ t′ ∈ ψl
f (x)

}
for a ∈ A, x ∈ A∗

Example hierarchical process trees and their languages:

L(Of (→(a, b)) = { 〈 f.a, f.b 〉 }
L(Of (→(a,Og(b))) = { 〈 f.a, f.g.b 〉 }

L(Of (×(→(a,Mf), b)) = { 〈 f.b 〉 , 〈 f.a, f.f.b 〉 ,
〈 f.a, f.f.a, f.f.f.b 〉 , . . . }

L(Of (Og(×(a,Mf))) = { 〈 f.g.a 〉 , 〈 f.g.f.g.a 〉 ,
〈 f.g.f.g.f.g.a 〉 , . . . }

L(Of (Og(×(a,Mf ,Mg))) = { 〈 f.g.a 〉 , 〈 f.g.g.a 〉 , 〈 f.g.f.g.a 〉 ,
〈 f.g.f.g.g.a 〉 , 〈 f.g.g.f.g.a 〉 , . . . }

OMain.main()

→

Main.input() OB.process()

×

A.process() →

B.stepPre() MB.process() B.stepPost()

Main.output()

Fig. 2. The hierarchical process tree model corresponding to the hierarchical
event log with the trace from Table II. Note that we modeled the recursion
at B.process() explicitly.

IV. HEURISTICS FOR HIERARCHY

To go from “flat” event logs (our input) to hierarchical
event logs (used during discovery), we rely on transforma-
tion heuristics. In the typical software system case, we will
use the Nested Calls heuristic, but our implementation also
provides other heuristics for different analysis scenarios. We
will discuss three of these heuristics for hierarchy next.

1) Nested Calls captures the “executions call stacks”.
Through the use of the life-cycle attribute (start-end), we
can view flat event logs as a collection of intervals, and
use interval containment to build our hierarchy. In Fig-
ure 3, a trace from the event log corresponding to the
program in Listing 1 is depicted as intervals. Table II
shows the corresponding “nested calls” hierarchical event
log trace. 2) Structured Names captures the static struc-
ture or “architecture” of the software source code. By
splitting activities like “package.class.method()” on “.” into
〈 package, class, method() 〉, we can utilize the designed hi-
erarchy in the code as a basis for discovery. 3) Attribute
Combination is a more generic approach, where we can
combine several attributes associated with events in a certain
order. For example, some events are annotated with a high-
level and a low-level description, like an interface or protocol
name plus a specific function or message/signal name.

V. MODEL DISCOVERY

A. Discovery Framework

Our techniques are based on the Inductive miner framework
for discovering process tree models. This framework is de-
scribed in [35]. Given a set

⊗
of process tree operators, [35]

Legend
start event
end event

Main.main()

Main.input() B.process() Main.output()

B.stepPre() B.process() B.stepPost()

A.process()

Fig. 3. A trace from the event log corresponding to logging the methods
in the program in Listing 1, depicted as intervals. By using the Nested Call
heuristics, a hierarchical event log can be constructed from contained intervals,
see also Table II. For example, B.process() is contained in Main.main().

TABLE II
A SINGLE TRACE IN AN EXAMPLE EVENT LOG CORRESPONDING TO THE

PROGRAM IN LISTING 1 AND THE INTERVALS IN FIGURE 3. EACH
COLUMN IS ONE EVENT, AND EACH ROW A LEVEL IN THE HIERARCHY.

Main.main() Main.main() Main.main() Main.main() Main.main()

Main.input() B.process() B.process() B.process() Main.output()

B.stepPre() B.process() B.stepPost()

A.process()

defines a framework to discover models using a divide and
conquer approach. Given a log L, the framework searches for
possible splits of L into sublogs L1, . . . , Ln, such that these
logs combined with an operator ⊗ can (at least) reproduce L
again. It then recurses on the corresponding sublogs and
returns the discovered submodels. Logs with empty traces or
traces with a single activity form the base cases for this frame-
work. Note that the produced model can be a generalization
of the log; see for example the language of the structured loop
(). In Table III, an example run of the framework is given.

TABLE III
EXAMPLE DISCOVERY ON THE LOG [〈 a, b, d 〉 , 〈 a, c, d, e, d 〉]. THE ROWS

ILLUSTRATE HOW THE DISCOVERY PROGRESSES. THE HIGHLIGHTS
INDICATE THE SUBLOGS USED, AND RELATE THEM TO THE
CORRESPONDING PARTIAL MODEL THAT IS DISCOVERED.

Step Discovered Model Event Log

1
→

? ? ?

a b d

a c d e d

2
→

a ? ?

a b d

a c d e d

3

→

a ×

b c

?
a b d

a c d e d

4

→

a ×

b c

	

d e

a b d

a c d e d

We present two adaptations of the framework described
above: one for hierarchy (Naı̈ve Discovery, Subsection V-B),
and one for recursions (Recursion Aware Discovery, Subsec-
tion V-C). Our adaptations maintain the termination guarantee,
perfect fitness guarantee, language rediscoverability guarantee,

and the polynomial runtime complexity from [35]. The details
of the above guarantees and runtime complexity for our adap-
tations are detailed in Subsection V-D. In our implementation,
we rely on the (in)frequency based variant to enable the
discovery of an 80/20 model, see also Subsection VI-A.

B. Naive Discovery

We generalize the above approach to also support hierarchy
by providing the option to split hierarchical event logs and use
hierarchical sequence projection.

Using our generalized discovery framework, we define a
naive realization associated with the named subtree opera-
tor Of , and a slightly modified base case. The details are given
in Algorithm 1. In Table IV, an example run is given.

This algorithmic variant is best suited for cases where
recursion does not make much sense, for example, when we
are using a hierarchical event log based on structured package-
class-method name hierarchies.

Algorithm 1: Naive Discovery (Naive)
Input: A hierarchical event log L
Output: A hierarchical process tree P such that L fits P
Description: Extended framework, using the named subtree operator Of .
Naive(L)
(1) if ∀ t ∈ L : t = ε
(2) return τ // the log is empty or only contains empty traces
(3) else if ∃f ∈ A : ∀ t ∈ L : t = 〈 f 〉
(4) return f // the log only has a single low-level activity
(5) else if ∃f ∈ A : (∀x ∈ t ∈ L : x[1] = f)∧(∃x ∈ t ∈ L : |x| > 1)
(6) // all events start with f , and there is a lower level in the hierarchy
(7) return Of (Naive(L�∗1))
(8) else
(9) // normal framework cases, based on the tree semantics (Def. III.2)
(10) Split L into into sublogs L1, . . . , Ln, such that:
(11) ∃⊗ ∈ {→,×,	,∧} : L ⊆ ⊗l(L1, . . . , Ln) // see [35]
(12) return ⊗(Naive(L1), . . . ,Naive(Ln))

Below are some more example logs and the models discov-
ered. Note that with this naive approach, the recursion in the
last example is not discovered.

Naive([〈 f.a, f.b 〉 , 〈 f.c 〉]) =Of (Naive([〈 a, b 〉 , 〈 c 〉]))
=Of (×(→(a, b), c))

Naive([〈 f.a, f.g.f.b 〉]) =Of (Naive([〈 a, g.f.b 〉]))
=Of (→(a,Naive([〈 g.f.b 〉])))
=Of (→(a,Og(Of (b))))

Naive([〈 f.a 〉 , 〈 f 〉]) =Of (Naive([〈 a 〉 , ε]))
=Of (×(a, τ))

C. Recursion Aware Discovery

In order to successfully detect recursion, we make some
subtle but important changes. We rely on two key notions:
1) a context path, and 2) delayed discovery. Both are explained
below, using the example shown in Table V.

This algorithmic variant is best suited for cases where
recursion makes sense, for example, when we are using an
event log based on the Nested Calls hierarchy (Section IV).

To detect recursion, we need to keep track of the named
subtrees from the root to the current subtree. We call the
sequence of activities on such a path the context path, nota-
tion C ∈ A∗. The idea is that whenever we discover a named
subtree Of , and we encounter another activity f somewhere in
the sublogs, we can verify this recursion using f ∈ C. Sublogs

collected during discovery are associated with a context path,
notation L(C). This approach is able to deal with complex
recursions (see examples at the end) and overloaded methods
(see the activity naming discussion in Section III-B2). In
Table V, the current context path C at each step is shown.

TABLE IV
EXAMPLE NAIVE DISCOVERY ON THE LOG [〈 f.a, f.f.b 〉]. THE ROWS

ILLUSTRATE HOW THE DISCOVERY PROGRESSES. THE HIGHLIGHTS
INDICATE THE SUBLOGS USED, AND RELATE THEM TO THE
CORRESPONDING PARTIAL MODEL THAT IS DISCOVERED.

Step Discovered Model Event Log Sublog View

1
Of

?

f f
a f

b
[〈 f.a, f.f.b 〉]

2

Of

→

a Of

?

f f
a f

b
[〈 a, f.b 〉]

3

Of

→

a Of

b

f f
a f

b
[〈 b 〉]

TABLE V
EXAMPLE RECURSION AWARE DISCOVERY ON THE LOG [〈 f.a, f.f.b 〉]

THE ROWS ILLUSTRATE HOW THE DISCOVERY PROGRESSES. THE
HIGHLIGHTS INDICATE THE SUBLOGS USED, AND RELATE THEM TO THE

CORRESPONDING PARTIAL MODEL THAT IS DISCOVERED.

Step Discovered Model Event Log Sublog View

1
Of

?

f f
a f

b

L =

[〈 f.a, f.f.b 〉]

(Context C = ε)

2

Of

→

a Mf

x f
a f

b

L(〈 f 〉) =
[〈 a, f.b 〉]

(Context C = 〈 f 〉)

3

Of

×

b →

a Mf

f f
a f

b

L(〈 f 〉) =
[〈 a, f.b 〉 , 〈 b 〉]

(Context C = 〈 f 〉)

Let’s have a closer look at steps 2 and 3 in Table V. Note
how the same subtree is discovered twice. In step 2, we detect
the recursion. And in step 3, we use the sublog after the
recursion part as an additional set of traces. The idea illustrated
here is that of delayed discovery. Instead of immediately
discovering the subtree for a named subtree Of , we delay
that discovery. The corresponding sublog is associated with
the current context path. For each context path, we discover
a model for the associated sublog. During this discovery,
the sublog associated with that context path may change. If
that happens, we run that discovery again on the extended

sublog. Afterwards, we insert the partial models under the
corresponding named subtrees operators.

Algorithm 2 details the recursion aware discovery algo-
rithm; it uses Algorithm 3 for a single discovery run. In the
example of Table V, we first discover on the complete log
with the empty context path (Alg. 2, line 2). In step 1, we
encounter the named subtree Of , and associate L(〈 f 〉) =
[〈 a, f.b 〉], for context path C = 〈 f 〉 (Alg. 3, line 12). In
step 2, we start discovery on C = 〈 f 〉 using the sublog
L(〈 f 〉) (Alg. 2, line 5). In this discovery, we encounter the
recursion f ∈ C, and add [〈 b 〉] to the sublog, resulting in
L(〈 f 〉) = [〈 a, f.b 〉 , 〈 b 〉] (Alg. 3, line 8). Finally, in step 3,
we rediscover for C = 〈 f 〉, now using the extended sublog
(Alg. 2, line 5). In this discovery run, no sublog changes
anymore. We insert the partial models under the corresponding
named subtrees operators (Alg. 2, line 9) and return the result.

Algorithm 2: Recursion Aware Discovery (RAD)
Input: A hierarchical event log L
Output: A hierarchical process tree P such that L fits P
Description: Extended framework, using the named subtree and recursion operators.
RAD(L)
(1) // discover root model using the full event log (C = ε)
(2) root = RADrun(L, ε)
(3) // discover the submodels using the recorded sublogs (C 6= ε)
(4) Let model be an empty map, relating context paths to process trees
(5) while ∃C ∈ A∗ : L(C) changed do model(C) = RADrun(L(C), C)
(6) // glue the partial models model(C) and root model root together
(7) foreach node P in process tree root (any order, including new children)
(8) Let C =

〈
f
∣∣ P ′ = Of foreach P ′ on the path from root to P

〉
(9) if (∃f : P = Of) ∧ C ∈ model then Set model(C) as the child of P
(10) return root

Algorithm 3: Recursion Aware Discovery - single run
Input: A hierarchical event log L, and a context path C
Output: A hierarchical process tree P such that L fits P
Description: One single run/iteration in the RAD extended framework.
RADrun(L, C)
(1) if ∀ t ∈ L : t = ε
(2) return τ // the log is empty or only contains empty traces
(3) else if ∃f ∈ A : ∀ t ∈ L : t = 〈 f 〉
(4) return f // the log only has a single low-level activity
(5) else if ∃f ∈ C : ∀x ∈ t ∈ L : x[1] = f
(6) // recursion on f is detected
(7) C′ = C1 · 〈 f 〉 where (C1 · 〈 f 〉 · C2) = C
(8) L(C′) = L(C′) ∪ L�∗1 // L�∗1 is added to the sublog for C′

(9) return Mf

(10) else if ∃f ∈ A : (∀x ∈ t ∈ L : x[1] = f) ∧ (∃x ∈ t ∈ L : |x| > 1)
(11) // discovered a named subtree f , note that f /∈ C since line 5 was false
(12) L(C · 〈 f 〉) = L�∗1 // L�∗1 is associated with C′ = C · 〈 x 〉
(13) return Of

(14) else
(15) // normal framework cases, based on the tree semantics (Def. III.2)
(16) Split L into into sublogs L1, . . . , Ln, such that:
(17) ∃⊗ ∈ {→,×,	,∧} : L ⊆ ⊗l(L1, . . . , Ln) // see [35]
(18) return ⊗(RADrun(L1,C), . . . ,RADrun(Ln,C))

Below are some more example logs, the models discovered,
and the sublogs associated with the involved context paths.
Note that with this approach, complex recursions are also
discovered.

RAD([〈 f.a, f.g.f.b 〉]) =Of (×(b,→(a,Og(Mf))))

where L(〈 f 〉) = [〈 b 〉 , 〈 a, g.f.b 〉]
L(〈 f, g 〉) = [〈 f.b 〉]

RAD([〈 f.g.g.a 〉 , 〈 f.g.f.g.a 〉]) =Of (Og(×(a,Mf ,Mg)))

where L(〈 f 〉) = [〈 g.g.a 〉 , 〈 g.f.g.a 〉 , 〈 g.a 〉]
L(〈 f, g 〉) = [〈 g.a 〉 , 〈 f.g.a 〉 , 〈 a 〉]

RAD([〈 f.f 〉]) =Of (×(Mf , τ))

where L(〈 f 〉) = [〈 f 〉 , ε]

D. Termination, Perfect Fitness, Language Rediscoverability,
and Runtime Complexity

Our Naı̈ve Discovery and Recursion Aware Discovery adap-
tations of the framework described [35] maintains the termi-
nation guarantee, perfect fitness guarantee, language rediscov-
erability guarantee, and the polynomial runtime complexity.
We will discuss each of these properties using the simplified
theorems and proofs from [36].

1) Termination Guarantee: The termination guarantee is
based on the proof for [36, Theorem 2, Page 7]. The basis for
the termination proof relies on the fact that the algorithm only
performs finitely many recursions. For the standard process
tree operators in the original framework, it is shown that the
log split operator only yields finitely many sublogs. Hence, for
our adaptations, we only have to show that the new hierarchy
and recursion cases only yield finitely many recursions.

Theorem V.1: Naı̈ve Discovery terminates.
Proof: Consider the named subtree case on Algorithm 1,

line 7. Observe that the log L has a finite depth, i.e., a finite
number of levels in the hierarchy. Note that the sequence
projection L�∗1 yields strictly smaller event logs, i.e, the
number of levels in the hierarchy strictly decreases. We can
conclude that the named subtree case for the Naı̈ve Discovery
yields only finitely many recursions. Hence, the Naı̈ve Dis-
covery adaptation maintains the termination guarantee of [36,
Theorem 2, Page 7].

Theorem V.2: Recursion Aware Discovery terminates.
Proof: Consider the named subtree and recursion cases in

Algorithm 3 on lines 8 and 12. Note that, by construction, for
all the cases where we end up in Algorithm 3, line 8, we know
that L is derived from, and bounded by, L(C′) as follows:
L ⊆ {L′�∗i | L′ ⊆ L(C′) ∧ 0 ≤ i ≤ ‖L(C′)‖ }. Observe that
the log L has a finite depth, i.e., a finite number of levels in the
hierarchy. Note that the sequence projection L�∗1 yields strictly
smaller event logs, i.e, the number of levels in the hierarchy
strictly decreases. Hence, we can conclude that L(C′) only
changes finitely often. Since C is derived from the log depth,
we also have a finitely many sublogs L(C′) that are being
used. Hence, the loop on Algorithm 2, line 5 terminates, and
thus the Recursion Aware Discovery adaptation maintains the
termination guarantee of [36, Theorem 2, Page 7].

2) Perfect Fitness: As stated in the introduction, we want
the discovered model to fit the actual behavior. That is, we
want the discovered model to at least contain all the behavior
in the event log. The perfect fitness guarantee states that all
the log behavior is in the discovered model, and we proof
this using the proof for [36, Theorem 3, Page 7]. The fitness
proof is based on induction on the log size1. As induction
hypothesis, we assume that for all sublogs, the discovery
framework returns a fitting model, and then prove that the
step maintains this property. That is, for all sublogs L′ we
have a corresponding submodel P ′ such that L′ ⊆ L(P ′). For

1Formally, the original induction is on the log size plus a counter parameter.
However, for our proofs, we can ignore this counting parameter.

our adaptations, it suffices to show that the named subtree and
recursion operators do not violate this assumption.

Theorem V.3: Naı̈ve Discovery returns a process model that
fits the log.

Proof: By simple code inspection on Algorithm 1, line 7
and using the induction hypothesis on L�∗1, we can see that
for the named subtree operator we return a process model that
fits the log L. Since this line is the only adaptation, the Naı̈ve
Discovery adaptation maintains the perfect fitness guarantee
of [36, Theorem 3, Page 7].

Theorem V.4: Recursion Aware Discovery returns a process
model that fits the log.

Proof: Consider the named subtree case on Algorithm 3,
line 12. Using the induction hypothesis on L(C · 〈 f 〉) = L�∗1,
we know that model(C · 〈 f 〉) will fit L(C · 〈 f 〉). By
Algorithm 2, line 9, we know that model(C · 〈 f 〉) will be
the child of Of . Hence, for the named subtree operator we
return a process model that fits the log L.

Consider the recursion case on Algorithm 3, line 8. Since
f ∈ C, we know there must exist a named subtree Of corre-
sponding to the recursive operator Mf . Due to Algorithm 2,
line 5 and the induction hypthesis, we know that at the end
model(C′) fits L(C′) (i.e., L(C′) ⊆ L(model(C′))). Since,
by construction, we know L�∗1 ⊆ L(C′), model(C′) also fits
L�∗1. By Algorithm 2, line 9, we know that Mf will be in the
subtree of Of . Hence, for the recursion operator we return a
process model that fits the log L.

We conclude that the Recursion Aware Discovery adaptation
maintains the perfect fitness guarantee of [36, Theorem 3,
Page 7].

3) Language Rediscoverability: The language rediscover-
ability property tells whether and under which conditions a
discovery algorithm can discover a model that is language-
equivalent to the original process. That is, given a ‘system
model’ P and an event log L that is complete w.r.t. P (for
some notion of completeness), then we rediscover a model P ′

such that L(P ′) = L(P).
We will show language rediscoverability in several steps.

First, we will define the notion of language complete logs.
Then, we define the class of models that can be language-
rediscovered. And finally, we will detail the language redis-
coverability proofs.

a) Language Completeness: Language rediscoverability
holds for directly-follows complete logs. We adapt this notion
of directly-folllows completeness from [36] by simply apply-
ing the existing definition to hierarchical event logs:

Definition 1 (Directly-follows completeness): Let Start(L)
and End(L) denote the set of start and end symbols amongst
all traces, respectively. A log L is directly-follows complete
to a model P , denoted as L �df P , iff:

1) 〈 . . . , x, y, . . . 〉 ∈ L(P)⇒ 〈 . . . , x, y, . . . 〉 ∈ L;
2) Start(L(P)) ⊆ Start(L);
3) End(L(P)) ⊆ End(L); and
4) Σ(P) ⊆ Σ(L).

Note that directly-follows completeness is defined over all
levels of a hierarchical log.

b) Class of Language-Rediscoverable Models: We will
prove language rediscoverability for the following class of
models. Let Σ(P) denote the set of activities in P . A model P
is in the class of language rediscoverable models iff for all
nodes ⊗(P1, . . . , Pn) in P we have:

1) No duplicate activities: ∀ i 6= j : Σ(Pi) ∩ Σ(Pj) = ∅;
2) In the case of a loop, the sets of start and end activities

of the first branch must be disjoint:
⊗ = 	⇒ Start(L(P1)) ∩ End(L(P1)) = ∅

3) No taus are allowed: ∀ i ≤ n : Pi 6= τ ;
4) In the case of a recursion node Mf , there exists a

corresponding named subtree node Of on the path
from P to Mf .

Note that the first three criteria follow directly from the
language rediscoverability class from [36]. The last criteria
is added to have well-defined recursions in our hierarchical
process trees.

c) Language-Rediscoverable Guarantee: The language
rediscoverability guarantee is based on the proof for [36,
Theorem 14, Page 16]. The proof in [36] is based on three
lemmas:
• [36, Lemma 11, Page 15] guarantees that any root process

tree operator is rediscovered;
• [36, Lemma 12, Page 16] guarantees that the base cases

can be rediscovered; and
• [36, Lemma 13, Page 16] guarantees that for all process

tree operators the log is correctly subdivided.
For our adaptations, we have to show:
1) Our recursion base case maintains [36, Lemma 12,

Page 16]; and
2) Our named subtree operator maintains [36, Lemma 11,

Page 15] and [36, Lemma 13, Page 16].
Theorem V.5: Naı̈ve Discovery preserves language redis-

coverability.
Proof: We only have to show that the introduction of the

named subtree operator maintains language rediscoverability.
First, we show for the named subtree operator that the root

process tree operator is rediscovered (Lemma 11). Assume a
process tree P = Of (P1), for any f ∈ A, and let L be a log
such that L �df P . Since we know that L �df P , we know that
∀x ∈ t ∈ L : x[1] = f , and there must be a lower level in the
tree. By simple code inspection on Algorithm 1, line 7, we
can see that the Naı̈ve Discovery will yield Of .

Next, we show for the named subtree operator that the log
is correctly subdivided (Lemma 13). That is, lets assume: 1)
a model P = Of (P1) adhering to the model restrictions; and
2) L ⊆ L(P) ∧ L �df P . Then we have to show that any
sublog Li we recurse upon has: Li ⊆ L(Pi) ∧ Li �df Pi.
For the named subtree operator, we have exactly one sublog
we recurse upon: L1 = L�∗1. We can easily prove this using
the sequence projection on the inducation hypothesis: L�∗1 ⊆
L(P)�∗1, after substitution: L�∗1 ⊆ L(Of (P1))�∗1. By definition
of the semantics for Of , we can rewrite this to: L�∗1 ⊆ L(P1).
The proof construction for Li �df Pi is analogous. Hence, for
the named subtree operator that the log is correctly subdivided.

We can conclude that the Naı̈ve Discovery adaptation
preserves language rediscoverability guarantee of [36, The-
orem 14, Page 16].

Theorem V.6: Recursion Aware Discovery preserves lan-
guage rediscoverability.

Proof: The proof for the introduction of the named
subtree operator is analogous to the proof for Theorem V.5,
using the fact that always L�∗1 ⊆ L(C′) for the corresponding
context path C′.

We only have to show that the introduction of the recursion
operator maintains language rediscoverability (Lemma 12).
That is, assume: 1) a model P = Mf adhering to the model
restrictions; and 2) L ⊆ L(P) ∧ L �df P . Then we have to
show that we discover the model P ′ such that P ′ = P .

Since we adhere to the model restrictions, due to restric-
tion 4, we know there must be a larger model P ′′ such that
the recursion node Mf is a leaf of P ′′ and there exists a
corresponding named subtree node Of on the path from P ′′

to Mf . Thus, we can conclude that L must be the sublog
associated with a context path C such that f ∈ C. By
code inspection on Algorithm 3, line 5, we see that we only
have to prove that ∀x ∈ t ∈ L : x[1] = f . This follows
directly from L�dfP . Hence, the recursion operator is correctly
rediscovered.

We can conclude that the Recursion Aware Discovery adap-
tation preserves language rediscoverability guarantee of [36,
Theorem 14, Page 16].

4) Runtime Complexity: In [36, Run Time Complexity,
Page 17], the authors describe how the basic discovery frame-
work is implemented as a polynomial algorithm. For the
selection and log splitting for the normal process tree operators
(Alg. 1, line 10, and Alg. 3, line 16), existing polynomial al-
gorithms were used. Furthermore, for the original framework,
the number of recursions made is bounded by the number
of activities: O(|Σ(L)|). We will show that this polynomial
runtime complexity is maintained for our adaptations.

In our Naı̈ve Discovery adaptation, the number of recursions
is determined by Algorithm 1, lines 7 and 10. For line 7,
the number of recursions is bounded by the depth of the
hierarchical event log: O(‖L‖). For line 10, the original
number of activities bound holds: O(|Σ(L)|). Thus, the total
number of recursions for our Naı̈ve Discovery is bounded by
O(‖L‖+ |Σ(L)|). Hence, the Naı̈ve Discovery adaptation has
a polynomial runtime complexity.

In one run of our Recursion Aware Discovery, the number
of recursions is determined by Algorithm 3, line 16. Note
that the recursion and named subtree cases do not recurse
directly due to the delayed discovery principle. For line 16, the
original number of activities bound holds: O(|Σ(L)|). Thus,
we can conclude that Algorithm 3 has a polynomial runtime
complexity.

For the complete Recursion Aware Discovery, the runtime
complexity is determined by Algorithm 2, lines 5 and 9. Each
iteration of the loop at line 5 is polynomial. The number of
iterations is determined by the number of times an L(C) is
changed. Based on Algorithm 3, lines 8 and 12, the number

of times an L(C) is changed is bounded by the depth of
the hierarchical event log: O(‖L‖). Thus, the total number
of iterations is polynomial and bounded by O(‖L‖). Each
iteration of the loop at line 9 is polinomial in the named tree
depth, and thus bounded by O(‖L‖). The number of iterations
is determined by the number of named subtrees, and thus also
bounded by O(‖L‖). Hence, the Recursion Aware Discovery
adaptation has a polynomial runtime complexity.

VI. USING AND VISUALIZING THE DISCOVERED MODEL

Discovering a behavioral backbone model is only step one.
Equally important is how one is going to use the model, both
for analysis and for further model driven engineering. In this
section, we touch upon some of the solutions we implemented,
and demo in Subsection VII-C and Figure 6.

A. Rewriting, Filtering and the 80/20 Model

To help the user understand the logged behavior, we provide
several ways of filtering the model, reducing the visible
complexity, and adjusting the model quality.

Based on frequency information, we allow the user to
inspect an 80/20 model. An 80/20 model describes the main-
stream (80%) behavior using a simple (20%) model [35].
We allow the user to interactively select the cutoff (80% by
default) using sliders directly next to the model visualization,
thus enabling the “real-time exploration” of behavior. Unusual
behavior can be projected and highlighted onto the 80%
model using existing conformance and deviation detection
techniques [2]. This way, it is immediately clear where the
unusual behavior is present in the model, and how it is
different from the mainstream behavior.

Based on hierarchical information, we allow both coarse
and fine grained filtering. Using sliders, the user can quickly
select a minimum and maximum hierarchical depth to inspect,
and hide other parts of the model. The idea of depth filtering
is illustrated in Figure 4. Afterwards, users can interactively
fold and unfold parts of the hierarchy. By searching, users
can quickly locate areas of interest. Using term-based tree
rewriting (see Table VI), we present the user with a simplified
model that preserves behavior.

TABLE VI
REDUCTION RULES FOR (HIERARCHICAL) PROCESS TREES

⊗(P1) = P1 for ⊗ ∈ {→,×,∧}
⊗(. . .1 ,⊗(. . .2), . . .3) = ⊗(. . .1 , . . .2 , . . .3) for ⊗ ∈ {→,∧}

⊗(. . .1 , τ, . . .2) = ⊗(. . .1 , . . .2) for ⊗ ∈ {→,∧}
×(. . .1 , τ, . . .2) = ×(. . .1 , . . .2) if ε ∈ L(. . .1 ∪ . . .2)

B. Linking the Model to Event Data and the Source Code

For further analysis, like performance (timing), frequency
(usage) and conformance, we annotate the discovered model
with additional information. By annotating this information
onto (parts of) the model, we can visualize it in the context of
the behavior. This annotation is based on the event log data
provided as input and is partly provided by existing algorithms
in the Process Mining Toolkit ProM. Most notably, we 1) align
the discovered model with the event log, as described in [2],

→

a Ox

→

b Oy

c

→

τ →

b y

Discovered Model Model after Depth Filtering

min depth

max depth

Fig. 4. Illustration of depth filtering, where we hide everything above x and
below y. The dashed arrows relate the altered nodes.

OMain.main()

→

Main.input() ×

A.f() B.f()

(a) Hierarchical process tree

Main.input()

A.f() B.f()

Main.main()

(b) Statechart

Main A B

alt

main()

main()

input()

f()

f()

f()

f()

(c) Sequence diagram

Main.main()+start

Main.input()+start

Main.input()+end

A.f()+start

A.f()+end

B.f()+start

B.f()+end

Main.main()+end

(d) Petri net

Fig. 5. A hierarchical process tree, and its mapping to different formalisms.

and 2) link model elements back to the referenced source code
lines in Eclipse that generated the logged events.

C. Mapping and Visualizing

For visualization and integration with existing techniques,
we implemented mappings to other formalisms. As noted
in [35], process trees represent a “block-structured” language.
Hence, we can simply map each operator to a block-structured
concept in the target formalism, and preserve behavior by
construction. We support mappings to formalisms such as
Statecharts, (Data) Petri nets, Sequence diagrams, and BPMN
diagrams. Some example mappings are given in Figure 5.

VII. EVALUATION

In this section, we compare our technique against related,
implemented techniques. The proposed algorithms are im-
plemented in the Statechart plugin for the process mining
framework ProM [30]. In the remainder of this section, we

will refer to Algorithm 1 as Naı̈ve, and to Algorithm 2 as RAD
(short for Recursion Aware Discovery). We end the evaluation
by showing example results in our tool.

A. Input and Methodology for Comparative Evaluation

In the comparative evaluation, we focus on the quantitative
aspects of the design criteria from the introduction. That is,
the approach and tools should provide a behavioral backbone
model that is precise and fits the actual system. We measure
two aspects for a number of techniques and input event logs:
1) the running time of the technique, and 2) the model quality.

For the running time, we measured the average running
time and associated 95% confidence interval over 30 micro-
benchmark executions, after 10 warmup rounds for the Java
JVM. Each technique is allowed at most 30 seconds for
completing a single model discovery. For the model quality,
we use fitness and precision as described in [2], and set a
time limit of at most 5 minutes. In short, fitness expresses
the part of the log that is represented by the model; precision
expresses the behavior in the model that is present in the log.
For these experiments we used a laptop with an i7-4700MQ
CPU @ 2.40 GHz, Windows 8.1 and Java SE 1.7.0 67 (64 bit)
with 12 GB of allocated RAM.

We selected five event logs as experiment input, covering
a range of input problem sizes. The input problem size is
typically measured in terms of four metrics: number of traces,
number of events, number of activities (size of the alphabet),
and average trace length. The event logs and their sizes are
shown in Table VII. The BPIC 2012 [51] and BPIC 2013 [43]
event logs are so called BPI Challenge logs. These large
real-life event logs with complex behavior are often used
in process mining evaluations. The challenge logs are made
available yearly in conjunction with the BPM conference and
are considered sufficiently large and complex inputs to stress
test process mining techniques. The JUnit 4.12 [31], Apache
Commons Crypto 1.0.0 [32], and NASA CEV [33] event logs
are created using an extended version of the instrumenta-
tion tool developed for [34], yielding XES event logs with
method-call level events. The JUnit 4.12 software [18] was
executed once, using the example input found at [9]. For the
Apache Commons Crypto 1.0.0 software [5], we executed the
CbcNoPaddingCipherStreamTest unit test. For the NASA CEV
software [37], we executed a unit test generated from the
source code, covering all of the code branches.

TABLE VII
THE EVENT LOGS USED IN THE EVALUATION, WITH INPUT SIZES

Event Log # Traces # Events # Acts Avg. |Trace|

[51] BPIC 2012 13, 087 262, 200 24 20.04
[43] BPIC 2013 7, 554 65, 533 13 8.70
[31] JUnit 4.12 1 946 182 946.00
[32] Crypto 1.0.0 3 241, 973 74 80, 657.67
[33] NASA CEV 2, 566 73, 638 47 28.70

We compare our discovery algorithms against a selection
of the techniques mentioned in Section II. Unfortunately, we
could not compare against some of the related work due to in-
valid input assumptions or the lack of a reference implementa-

TABLE VIII
RUNNING TIME FOR THE DIFFERENT ALGORITHMS, HIERARCHY HEURISTICS, PATHS FREQUENCY FILTER SETTINGS, AND EVENT LOGS.

Algorithm (Heuristic) Paths BPIC 2012 BPIC 2013 JUnit 4.12 Crypto 1.0.0 NASA CEV

[49] Alpha miner 150.1

10
2

10
3

10
4

73.5

10
2

10
3

9.2

10
1

10
2

10
3

183.1

10
0

10
2

10
4

37.8

10
2

10
3

10
4

[56] Heuristics 840.2 278.0 1349.7 −T 359.6
[21] Fuzzy miner 2858.5 827.4 166.8 −T 4148.2
[50] ILP miner −T 6023.8 −T −T −T

[52] ILP with filtering 7234.3 4354.7 −T −T −T

[55] MINT, redblue, k=1 −T −T 243.9 −T 13426.0
[55] MINT, redblue, k=2 −T −T 582.0 −T 22213.4
[55] MINT, redblue, k=3 −T −T 751.8 −T −T

[55] MINT, ktails, k=1 −T −T 108.9 −T −T

[55] MINT, ktails, k=2 −T −T 371.6 −T −T

[55] MINT, ktails, k=3 −T −T 512.3 −T −T

[7] Synoptic −T −T −T −T −T

[35] IM (baseline) 1.0 3239.9 1351.2 215.7 10866.1 911.3
[35] IM (baseline) 0.8 5111.6 947.4 268.5 5213.9 912.6

O
ur

te
ch

ni
qu

es

Naı̈ve (no heuristic) 1.0 3588.1 1117.8 278.3 26804.7 959.5
Naı̈ve (no heuristic) 0.8 2865.6 603.4 298.5 −T 1047.1
Naı̈ve (Nested Calls) 1.0 n/a n/a 15.1 1544.6 355.9
Naı̈ve (Nested Calls) 0.8 n/a n/a 12.6 1545.6 341.5
RAD (Nested Calls) 1.0 n/a n/a 16.4 2186.4 439.0
RAD (Nested Calls) 0.8 n/a n/a 14.6 2082.8 373.8
Naı̈ve (Struct. Names) 0.8 2058.6 891.1 23.3 −M 1275.9
RAD (Struct. Names) 0.8 2395.0 1028.6 23.7 −M 1452.3

Avg. runtime (in milliseconds, with log scale plot), over 30 runs, with 95% confidence interval
M Out of memory exception (12 GB) T Time limit exceeded (30 sec.) n/a Heuristic not applicable

tion. The Inductive miner (IM) [35] is our baseline comparison
algorithm, since our approach builds upon the IM framework.
For the Inductive miner and our derived techniques, we also
consider the paths setting. This is the frequency cutoff for
discovering an 80/20 model (see Subsection VI-A): 1.0 means
all behavior, 0.8 means 80% of the behavior. The work
of [49], [56], [52], [50] provides a comparison with standard
process mining techniques. The Fuzzy miner [21] provides
a comparison for hierarchy discovery. However, it yields
models without semantics, and hence the quality cannot be
determined. The MINT algorithm (EFSM inference) [55], [54]
provides a comparison with the well-known redblue and ktails
dynamic analysis techniques. The Synoptic algorithm [7], [6]
is an invariant based FSM inferrer.

For our techniques, we also consider the following heuris-
tics for hierarchy: 1) No heuristic (use log as is), 2) Nested
Calls, and 3) Structured package.class.method Names (Struct.
Names). Note that the Nested Calls heuristic is only applicable
for software event logs, and not for the BPIC logs.

B. Comparative Evaluation Results and Discussion

1) Runtime Analysis: In Table VIII, the results for the run-
time benchmark are given. As noted before, the Nested Calls
setup is not applicable for the BPIC logs. We immediately
observe that the ILP, MINT, and Synoptic algorithms could
not finish in time on most logs. MINT and Synoptic have
difficulty handling a large number of traces. We also notice
that most setups require a long processing time and a lot of
memory for the Apache Crypto log. Large trace lengths, such
as in the Crypto log, are problematic for all approaches. Our
techniques overcome this problem by using the hierarchy to
divide large traces into multiple smaller traces (see below).

When we take a closer look at the actual running times,
we observe the advantages of the heuristics for hierarchy
and accompanied discovery algorithms. In all cases, using the
right heuristic before discovery improves the running time. In
extreme cases, like the Apache Crypto log, it even makes the
difference between getting a result and having no result at all.
Note that, with a poorly chosen heuristic, we might not get
any improvements, e.g., note the absence of models for the
Apache Crypto plus Structured Names heuristics.

The speedup factor for our technique depends on an im-
plicit input problem size metric: the depth of the discovered
hierarchy. In Table IX, the discovered depths are given for
comparison. For example, the dramatic decrease in running
time for the JUnit log can be explained by the large depth in
hierarchy: 25 levels in this case. This implies that the event log
is decomposed into many smaller sublogs, as per Alg. 1, line 7,
and Alg. 3, lines 8 and 12. Hence, the imposed hierarchy
indirectly yields a good decomposition of the problem, aiding
the divide and conquer tactics of the underlying algorithms.

TABLE IX
DEPTH OF THE DISCOVERED HIERARCHY, FOR THE DIFFERENT EVENT

LOGS, HIERARCHY HEURISTICS, AND ALGORITHMS

Nested Calls Struct. Names

Event Log Naı̈ve RAD Naı̈ve RAD

[51] BPIC 2012 n/a n/a 2 2
[43] BPIC 2013 n/a n/a 2 2
[31] JUnit 4.12 25 18 9 9
[32] Apache Crypto 1.0.0 8 8 n/a n/a

[33] NASA CEV 3 3 3 3

n/a No model (see Table VIII)

TABLE X
MODEL QUALITY SCORES FOR THE DIFFERENT ALGORITHMS, HIERARCHY HEURISTICS, PATHS FREQUENCY FILTER SETTINGS, AND EVENT LOGS.

SCORES RANGE FROM 0.0 TO 1.0, HIGHER IS BETTER. NO SCORES ARE AVAILABLE FOR THE FUZZY MODEL AND STRUCTURED NAMES HIERARCHY.
BPIC 2012 BPIC 2013 JUnit 4.12 Crypto 1.0.0 NASA CEV

Algorithm (Heuristic) Paths Fitness Precision Fitness Precision Fitness Precision Fitness Precision Fitness Precision

[49] Alpha miner −U −U 0.36 0.88 −U −U −U −U 0.91 0.06
[56] Heuristics 0.72 0.95 −U −U −U −U n/a n/a −U −U

[50] ILP miner n/a n/a 1.00 0.36 n/a n/a n/a n/a n/a n/a

[52] ILP, filtering 0.74 0.28 0.95 0.45 n/a n/a n/a n/a n/a n/a

[55] MINT, redblue, k=1 n/a n/a n/a n/a 0.00 −R n/a n/a 0.79 0.44
[55] MINT, redblue, k=2 n/a n/a n/a n/a 0.48 0.17 n/a n/a 0.81 0.45
[55] MINT, redblue, k=3 n/a n/a n/a n/a 0.13 0.06 n/a n/a n/a n/a

[55] MINT, ktails, k=1 n/a n/a n/a n/a 0.00 −R n/a n/a n/a n/a

[55] MINT, ktails, k=2 n/a n/a n/a n/a 0.43 0.16 n/a n/a n/a n/a

[55] MINT, ktails, k=3 n/a n/a n/a n/a 0.12 0.06 n/a n/a n/a n/a

[7] Synoptic n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

[35] IM (baseline) 1.0 1.00 0.37 1.00 0.62 1.00 0.34 1.00 0.35 1.00 0.55
[35] IM (baseline) 0.8 0.98 0.49 0.95 0.64 0.90 0.30 0.88 0.41 0.91 0.53

O
ur

te
ch

ni
qu

es Naı̈ve (no heuristic) 1.0 1.00 0.37 1.00 0.62 1.00 0.34 1.00 0.35 1.00 0.55
Naı̈ve (no heuristic) 0.8 0.98 0.49 0.95 0.64 0.90 0.30 0.88 0.41 0.91 0.53
Naı̈ve (Nested Calls) 1.0 n/a n/a n/a n/a 1.00 0.84 1.00 0.45 1.00 0.80
Naı̈ve (Nested Calls) 0.8 n/a n/a n/a n/a 0.90 0.87 0.99 0.45 1.00 0.81
RAD (Nested Calls) 1.0 n/a n/a n/a n/a 1.00 0.83 1.00 0.45 1.00 0.80
RAD (Nested Calls) 0.8 n/a n/a n/a n/a 0.89 0.84 0.99 0.45 1.00 0.81

T Time limit exceeded (5 min.) R Not reliable (fitness = 0) U Unsound model n/a No model (see Table VIII)

2) Model Quality Analysis: In Table X, the results of the
model quality measurements are given. The Fuzzy miner is
absent due to the lack of semantics for fuzzy models. For the
Structured Names heuristic, there was no trivial event mapping
for the quality score measurement.

Compare the quality scores between the Nested Calls setup
with No heuristics and the related work. Note that in all cases,
the Nested Calls setup yields a big improvement in precision,
with no significant impact on fitness. The drop in quality for
the JUnit - RAD case is due to the limitations in translation of
the recursive structure to the input format of [2]. In addition,
our technique without heuristics, with paths at 1.0, maintains
the model quality guarantees (perfect fitness). Overall, we
can conclude that the added expressiveness of modeling the
hierarchy have a positive impact on the model quality.

Fig. 6. Screenshot of the workbench tool implementation [30]

C. Using the Tool

In Figure 6, we show some of the functionality and solutions
available via the workbench tool implementation in ProM [30].
Via the user interface, the analyst first selects the desired
heuristic for hierarchy. Afterwards, the analysis is presented
through a Statechart visualization of the discovered model,
annotated with frequency information. With the sliders on the
right and the tree view and search box on the left, the analyst
can adjust parameters in real time and interactively explore
the model. The analyst can switch visualizations directly in
the workbench UI, and view the model as, for example, a
sequence diagram. Thanks to a corresponding Eclipse plugin,
the model and analysis results can be linked back to the source
code. A simple double-click on the model allows for a jump
to the corresponding source code location. In addition, we can
overlay the code in Eclipse with our model analysis results.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we 1) proposed a novel hierarchy and re-
cursion extension to the process tree model; and 2) defined
the first, recursion aware process model discovery technique
that leverages hierarchical information in event logs, typically
available for software system cases. This technique allows
us to analyze the operational processes of software systems
under real-life conditions at multiple levels of granularity. An
implementation of the proposed algorithm is made available
via the Statechart plugin in the process mining framework
ProM [30]. The Statechart workbench provides an intuitive
way to discover, explore and analyze hierarchical behavior,
integrates with existing ProM plugins and links back to the
source code in Eclipse. Our experimental results, based on
real-life (software) event logs, demonstrate the feasibility and
usefulness of the approach and show the huge potential to
speed up discovery by exploiting the available hierarchy.

Future work aims to uncover exceptional and error con-
trol flows (i.e., try-catch and cancellation patterns), provide
reliability analysis, and better support multi-threaded and
distributed software. In addition, enabling the proposed tech-
niques in a streaming context could provide valuable real-time
insight into software in its natural environment. Furthermore,
since (software) event logs can be very large, using a streaming
context means we do not have to use a large amount of storage.

REFERENCES

[1] C. Ackermann, M. Lindvall, and R. Cleaveland. Recovering views of
inter-system interaction behaviors. In Reverse Engineering, 2009. WCRE
’09. 16th Working Conference on, pages 53–61. IEEE, Oct 2009.

[2] A. Adriansyah. Aligning observed and modeled behavior. PhD thesis,
Technische Universiteit Eindhoven, 2014.

[3] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Automated reverse engi-
neering of UML sequence diagrams for dynamic web applications. In
Software Testing, Verification and Validation Workshops, 2009. ICSTW
’09. International Conference on, pages 287–294. IEEE, April 2009.

[4] A. Amighi, P. de C. Gomes, D. Gurov, and M. Huisman. Sound control-
flow graph extraction for Java programs with exceptions. In Proceedings
of the 10th International Conference on Software Engineering and
Formal Methods, SEFM’12, pages 33–47, Berlin, Heidelberg, 2012.
Springer-Verlag.

[5] Apache Commons Documentation Team. Apache Commons Crypto
1.0.0-src. http://commons.apache.org/proper/commons-crypto. [Online,
accessed 3 March 2017].

[6] I. Beschastnikh. Synoptic Model Inference. https://github.com/
ModelInference/synoptic. [Online, accessed 31 August 2017].

[7] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D. Ernst. Synoptic:
Studying logged behavior with inferred models. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, pages 448–451,
New York, NY, USA, 2011. ACM.

[8] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy. Inferring
models of concurrent systems from logs of their behavior with CSight.
In Proceedings of the 36th International Conference on Software Engi-
neering, ICSE 2014, pages 468–479, New York, NY, USA, 2014. ACM.

[9] S. Birkner, E. Gamma, and K. Beck. JUnit 4 - Getting Started. https://
github.com/junit-team/junit4/wiki/Getting-started. [Online, accessed 19
July 2016].

[10] L. C. Briand, Y. Labiche, and J. Leduc. Toward the reverse engineering
of UML sequence diagrams for distributed Java software. Software
Engineering, IEEE Transactions on, 32(9):642–663, Sept 2006.

[11] L. C. Briand, Y. Labiche, and Y. Miao. Towards the reverse engineering
of UML sequence diagrams. 2013 20th Working Conference on Reverse
Engineering (WCRE), page 57, 2003.

[12] J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der Aalst. On
the role of fitness, precision, generalization and simplicity in process
discovery. In On the Move to Meaningful Internet Systems: OTM 2012,
volume 7565 of Lecture Notes in Computer Science, pages 305–322.
Springer Berlin Heidelberg, 2012.

[13] S. Chiba. Javassist – a reflection-based programming wizard for Java.
In Proceedings of OOPSLA’98 Workshop on Reflective Programming in
C++ and Java, page 5, October 1998.

[14] S. Chiba. Load-time structural reflection in Java. In E. Bertino, editor,
European Conference on Object-Oriented Programming 2000 – Object-
Oriented Programming, volume 1850 of Lecture Notes in Computer
Science, pages 313–336. Springer Berlin Heidelberg, 2000.

[15] R. Conforti, M. Dumas, L. Garcı́a-Bañuelos, and M. La Rosa. BPMN
miner: Automated discovery of BPMN process models with hierarchical
structure. Information Systems, 56:284 – 303, 2016.

[16] J. R. Cordy. The TXL source transformation language. Science of
Computer Programming, 61(3):190 – 210, 2006. Special Issue on The
Fourth Workshop on Language Descriptions, Tools, and Applications
(LDTA ’04).

[17] W. De Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Execution
Patterns in Object-oriented Visualization. Proc. COOTS, pages 219–
234, 1998.

[18] E. Gamma and K. Beck. JUnit 4.12. https://mvnrepository.com/artifact/
junit/junit/4.12. [Online, accessed 19 July 2016].

[19] J. D. Gradecki and N. Lesiecki. Mastering AspectJ. Aspect-Oriented
Programming in Java, volume 456. John Wiley & Sons, 2003.

[20] S. L. Graham, P. B. Kessler, and M. K. Mckusick. gprof: call graph
execution profiler. In Proceedings of the 1982 SIGPLAN symposium on
Compiler construction - SIGPLAN ’82, pages 120–126, New York, New
York, USA, 1982. ACM Press.

[21] C. W. Günther and W. M. P. van der Aalst. Fuzzy mining – adaptive
process simplification based on multi-perspective metrics. In Business
Process Management, pages 328–343. Springer, 2007.

[22] C. W. Günther and H. M. W. Verbeek. XES – standard definition. Tech-
nical Report BPM reports 1409, Eindhoven University of Technology,
2014.

[23] M. J. H. Heule and S. Verwer. Exact DFA Identification Using SAT
Solvers, pages 66–79. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[24] R. P. Jagadeesh Chandra Bose and W. M. P. van der Aalst. Abstractions
in Process Mining: A Taxonomy of Patterns, volume 5701 of Lecture
Notes in Computer Science, pages 159–175. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[25] R. P. Jagadeesh Chandra Bose, E. H. M. W. Verbeek, and W. M. P.
van der Aalst. Discovering Hierarchical Process Models Using ProM,
volume 107 of Lecture Notes in Business Information Processing, pages
33–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[26] I. Jonyer, L. B. Holder, and D. J. Cook. MDL-Based Context-Free Graph
Grammar Induction. International Journal on Artificial Intelligence
Tools, 13(01):65–79, mar 2004.

[27] R. Kollmann and M. Gogolla. Capturing dynamic program behaviour
with UML collaboration diagrams. In Software Maintenance and
Reengineering, 2001. Fifth European Conference on, pages 58–67, 2001.

[28] E. Korshunova, M. Petkovic, M. G. J. van den Brand, and M. R.
Mousavi. CPP2XMI: Reverse engineering of UML class, sequence,
and activity diagrams from C++ source code. In 2006 13th Working
Conference on Reverse Engineering, pages 297–298, Oct 2006.

[29] Y. Labiche, B. Kolbah, and H. Mehrfard. Combining static and
dynamic analyses to reverse-engineer scenario diagrams. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference on,
pages 130–139. IEEE, Sept 2013.

[30] M. Leemans. Statechart plugin for ProM 6. https://svn.win.tue.nl/repos/
prom/Packages/Statechart/. [Online, accessed 15 July 2016].

[31] M. Leemans. JUnit 4.12 software event log. http://doi.org/10.4121/uuid:
cfed8007-91c8-4b12-98d8-f233e5cd25bb, 2016.

[32] M. Leemans. Apache Commons Crypto 1.0.0 - Stream Cbc-
Nopad unit test software event log. http://doi.org/10.4121/uuid:
bb3286d6-dde1-4e74-9a64-fd4e32f10677, 2017.

[33] M. Leemans. NASA Crew Exploration Vehicle
(CEV) software event log. http://doi.org/10.4121/uuid:
60383406-ffcd-441f-aa5e-4ec763426b76, 2017.

[34] M. Leemans and W. M. P. van der Aalst. Process mining in software
systems: Discovering real-life business transactions and process models
from distributed systems. In Model Driven Engineering Languages and
Systems (MODELS), 2015 ACM/IEEE 18th International Conference on,
pages 44–53, Sept 2015.

[35] S. J. J. Leemans. Robust process mining with guarantees. PhD thesis,
Eindhoven University of Technology, May 2017.

[36] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst. Discovering
block-structured process models from event logs - a constructive ap-
proach. In J. M. Colom and J. Desel, editors, Application and Theory of
Petri Nets and Concurrency, pages 311–329. Springer Berlin Heidelberg,
2013.

[37] NASA. JPF Statechart and CEV example. http://babelfish.arc.nasa.gov/
trac/jpf/wiki/projects/jpf-statechart. [Online, accessed 3 March 2017].

[38] C. G. Nevill-Manning and I. H. Witten. Identifying Hierarchical
Structure in Sequences: A linear-time algorithm. Journal of Artificial
Intelligence Research, 7:67–82, aug 1997.

[39] R. Oechsle and T. Schmitt. JAVAVIS: Automatic program visualization
with object and sequence diagrams using the Java Debug Interface (JDI).
In S. Diehl, editor, Software Visualization, volume 2269 of Lecture Notes
in Computer Science, pages 176–190. Springer Berlin Heidelberg, 2002.

[40] A. Rountev and B. H. Connell. Object naming analysis for reverse-
engineered sequence diagrams. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 254–263, New
York, NY, USA, 2005. ACM.

http://commons.apache.org/proper/commons-crypto
https://github.com/ModelInference/synoptic
https://github.com/ModelInference/synoptic
https://github.com/junit-team/junit4/wiki/Getting-started
https://github.com/junit-team/junit4/wiki/Getting-started
https://mvnrepository.com/artifact/junit/junit/4.12
https://mvnrepository.com/artifact/junit/junit/4.12
https://svn.win.tue.nl/repos/prom/Packages/Statechart/
https://svn.win.tue.nl/repos/prom/Packages/Statechart/
http://doi.org/10.4121/uuid:cfed8007-91c8-4b12-98d8-f233e5cd25bb
http://doi.org/10.4121/uuid:cfed8007-91c8-4b12-98d8-f233e5cd25bb
http://doi.org/10.4121/uuid:bb3286d6-dde1-4e74-9a64-fd4e32f10677
http://doi.org/10.4121/uuid:bb3286d6-dde1-4e74-9a64-fd4e32f10677
http://doi.org/10.4121/uuid:60383406-ffcd-441f-aa5e-4ec763426b76
http://doi.org/10.4121/uuid:60383406-ffcd-441f-aa5e-4ec763426b76
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-statechart
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-statechart

[41] P. Siyari, B. Dilkina, and C. Dovrolis. Lexis: An Optimization Frame-
work for Discovering the Hierarchical Structure of Sequential Data.
Gecco, pages 421–434, feb 2016.

[42] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An
aspect-oriented extension to the C++ programming language. In Pro-
ceedings of the Fortieth International Conference on Tools Pacific: Ob-
jects for Internet, Mobile and Embedded Applications, CRPIT ’02, pages
53–60, Darlinghurst, Australia, Australia, 2002. Australian Computer
Society, Inc.

[43] W. Steeman. BPI Challenge 2013, incidents. http://dx.doi.org/10.4121/
uuid:500573e6-accc-4b0c-9576-aa5468b10cee, 2013.

[44] T. Systä, K. Koskimies, and H. Müller. Shimba – an environment
for reverse engineering Java software systems. Software: Practice and
Experience, 31(4):371–394, 2001.

[45] P. Tonella and A. Potrich. Reverse engineering of the interaction
diagrams from C++ code. In Software Maintenance, 2003. ICSM 2003.
Proceedings. International Conference on, pages 159–168, Sept 2003.

[46] W. M. P. van der Aalst. Process Mining: Data Science in Action.
Springer-Verlag, Berlin, 2016.

[47] W. M. P. van der Aalst, A. K. Alves de Medeiros, and A. J. M. M.
Weijters. Genetic Process Mining. In G. Ciardo and P. Darondeau,
editors, Applications and Theory of Petri Nets 2005, volume 3536
of Lecture Notes in Computer Science, pages 48–69. Springer-Verlag,
Berlin, 2005.

[48] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen,
E. Kindler, and C. W. Günther. Process mining: a two-step approach
to balance between underfitting and overfitting. Software & Systems
Modeling, 9(1):87–111, 2010.

[49] W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster.
Workflow Mining: Discovering Process Models from Event Logs. IEEE
Transactions on Knowledge and Data Engineering, 16(9):1128–1142,
2004.

[50] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and
A. Serebrenik. Process Discovery Using Integer Linear Programming,
pages 368–387. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[51] B.F. van Dongen. BPI Challenge 2012. http://dx.doi.org/10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f, 2012.

[52] S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst. Avoiding
Over-Fitting in ILP-Based Process Discovery, pages 163–171. Springer
International Publishing, Cham, 2015.

[53] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P.
van der Aalst. XES, XESame, and ProM 6. In P. Soffer and
E. Proper, editors, Information Systems Evolution, volume 72 of Lecture
Notes in Business Information Processing, pages 60–75. Springer Berlin
Heidelberg, 2011.

[54] N. Walkinshaw. EFSMInferenceTool. https://bitbucket.org/nwalkinshaw/
efsminferencetool. [Online, accessed 19 July 2016].

[55] N. Walkinshaw, R. Taylor, and J. Derrick. Inferring extended finite
state machine models from software executions. Empirical Software
Engineering, 21(3):811–853, 2016.

[56] A. J. M. M. Weijters and J. T. S. Ribeiro. Flexible Heuristics Miner
(FHM). In 2011 IEEE Symposium on Computational Intelligence and
Data Mining (CIDM), pages 310–317, April 2011.

[57] Z. Yao, Q. Zheng, and G. Chen. AOP++: A generic aspect-oriented
programming framework in C++. In R. Glück and M. Lowry, editors,
Generative Programming and Component Engineering, volume 3676
of Lecture Notes in Computer Science, pages 94–108. Springer Berlin
Heidelberg, 2005.

http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://bitbucket.org/nwalkinshaw/efsminferencetool
https://bitbucket.org/nwalkinshaw/efsminferencetool

	I Introduction
	II Related Work
	II-A Groups and Criteria for Comparison
	II-B Discussion of the Related Work

	III Definitions
	III-A Preliminaries
	III-A1 Multisets
	III-A2 Sequences

	III-B Event Logs
	III-B1 ``Flat'' Event Logs
	III-B2 Hierarchical Event Logs

	III-C Process Trees
	III-D Hierarchical Process Trees

	IV Heuristics for Hierarchy
	V Model Discovery
	V-A Discovery Framework
	V-B Naive Discovery
	V-C Recursion Aware Discovery
	V-D Termination, Perfect Fitness, Language Rediscoverability, and Runtime Complexity
	V-D1 Termination Guarantee
	V-D2 Perfect Fitness
	V-D3 Language Rediscoverability
	V-D4 Runtime Complexity

	VI Using and Visualizing the Discovered Model
	VI-A Rewriting, Filtering and the 80/20 Model
	VI-B Linking the Model to Event Data and the Source Code
	VI-C Mapping and Visualizing

	VII Evaluation
	VII-A Input and Methodology for Comparative Evaluation
	VII-B Comparative Evaluation Results and Discussion
	VII-B1 Runtime Analysis
	VII-B2 Model Quality Analysis

	VII-C Using the Tool

	VIII Conclusion and Future Work
	References

