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6 Evaluation

Evaluation of the candidate process trees can be done in multiple ways. One
method could be to present the domain expert with a list of candidate process
trees (or process models) to choose from. However this approach is highly sub-
jective and would depend entirely on the preference of the domain expert, and
hence would be difficult to quantify. Another approach for evaluation is to dis-
cover an expected model based on user specified constraints. In this approach
there is a certain expected model, which isn’t discovered by the traditional pro-
cess discovery techniques due to reasons such as data inconsistencies, discovery
algorithm biases etc. We use the latter approach for evaluation as it provides a
quantifiable and controlled way to evaluate the results without depending on the
high subjectivity of domain expert. We evaluate our approach based on both a
synthetic log and a real life log.

6.1 Synthetic Event Log

We use a synthetic event log to demonstrate how our approach could improve
an incorrect model discovered due to algorithm bias and noisy event log. For
the event log L = [ 〈A,B,C,D〉90, 〈A,C,B,D〉90, 〈A,C,D,B〉90, 〈C,A,D,B〉90,
〈C,A,B,D〉90, 〈C,D,A,B〉90, 〈C,D,B,A〉6, 〈C,B,A,D〉6, 〈D,A,C,B〉6], the Induc-
tive Miner infrequent (IMi) [9] generates the process tree with all four activities
in parallel as shown in Figure 10a.

From the high frequent traces of the log we can deduce simple rules such as
activity A is always eventually followed by activity B ; and activity B is always
preceded by activity A. Similar relationship holds for activities C and D. We
use this information and input the process tree discovered by IMi [9], event log
(L) and the following four constraints in our algorithm: response(A,B), prece-
dence(A,B), response(C,D), and precedence(C,D). Upon setting the maximum
edit distance to 3, the modification algorithm creates 554 unique process trees
resulting in a Pareto front of 7 process trees.

Figure 10 shows the original process tree discovered by Inductive Miner (Fig-
ure 10a) and a modified process tree (Figure 10b) with highest replay fitness and
precision score from the Pareto front. Table 4 summarizes the dimension scores
of the process trees from Figure 10. The modified process tree from Figure 10b
satisfies all the four constraints. The number of edit operations required in order
to discover the modified process trees is 2. Figure 10b also has a higher precision
value of 1, and considerably high replay fitness score of almost 1. This process
tree is highly precise, thereby explaining the high frequent traces of the event log
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Fig. 10: Original and modified process trees for event log L.
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Table 4: Quality dimensions of the Pareto front for process trees from Figure 10

tree
constraints
satisfied

replay
fitness

precision generalization simplicity
number
of edits

Figure 10a 0 1 0.833 0.957 1 0
Figure 10b 4 0.997 1 0.957 1 2

much better and ignoring the infrequent noisy traces. From this we can conclude
that by adding knowledge inferred from the event log to the discovered model it
becomes possible to improve it considerably. This way, it is possible to overcome
noise in the event log.

6.2 Real Life Event Log

Exceptional cases may dominate the normal cases, thereby leading to a process
model that is over-fitting the data or that is too general to be of any value. This
process model could however be improved by incorporating domain knowledge.
In order to evaluate such a scenario, we use the following steps on a real-life log
containing the road traffic fine management process with 11 events and 150,370
cases available at [10]:

• Use the complete event log to mine a process tree using IMi resulting in a
structured process tree. Figure 11a shows the Petri net representation of this
process tree. Learn domain rules based on this tree.

• Filter the event log to select 10% of the cases having exceptionally deviating
behavior from the process model of Figure 11a.

• Create a process tree based on the filtered log using IMi. We assume that this
process tree is our starting point, and input it to the modification algorithm.
The Petri net representation of this process tree is shown in Figure 11b.

• Use the rules learnt from the original process model, in combination with
the entire event log and modified trees to generate a Pareto front.

We deduce 2 coexistence, 2 responded-existence, 4 response and 1 not-succession
rules (9 in total) from the original process model. We use an edit distance of 3
in the modification algorithm and stop creating variants of process trees after
creating 500,000 unique process trees which results in a Pareto front of 54 process
trees. In Table 5 we compare the original process tree, filtered process tree and
the 5 modified process trees; out of which; trees 1,2, and 3 have the combined
highest values for replay fitness and precision in the Pareto front, and trees
4 and 5 have highest individual values in the Pareto front for replay fitness
and precision respectively. As we use the process model containing only 10%

(a) Process model mined with complete
event log.

(b) Process model with filtered log con-
taining infrequent traces only.

Fig. 11: Petri net models to show structural dissimilarities between models for
complete and filtered event logs.
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Table 5: Dimensions statistics for process trees based on real life event log

tree
constraints
satisfied

replay
fitness

precision generalization simplicity
number
of edits

Complete log 9 0.970 0.872 0.983 1 0
Filtered log 2 0.957 0.740 0.845 1 0
Pareto Front 1 8 0.882 0.785 0.861 1 3
Pareto Front 2 8 0.817 0.812 0.839 1 3
Pareto Front 3 8 0.816 0.825 0.862 1 3
Pareto Front 4 8 1 0.576 0.009 1 3
Pareto Front 5 8 0.544 0.943 0.929 1 3

of the exceptional cases from the original log as our starting point, most of
the modified process trees score lower than the original process tree on replay
fitness and precision dimensions. Also, trees 4 and 5 from Table 5 demonstrate
that post modification higher replay fitness could result in lower precision and
vice versa. Although the filtered process tree has a higher score in terms of
fitness, it has the lowest precision score among all the other trees (except tree
4). The process tree discovered from the complete event log scores the highest
in all dimensions. However, the modified trees 1 to 3 from Pareto front (in
Table 5) have a nicely balanced score of all dimensions and in general, explain
the complete event log much better than the process tree from the incomplete
filtered log. From a users perspective, depending on the preference, the user can
select any process tree from the Pareto front. For example, if the user is looking
for a process tree satisfying maximum constraints as well as describing the log
very well, then then tree 4 from Table 5 seems to be the viable option. However,
the user can also see the tradeoff in the Pareto front and the fact that although
tree 4 satisfies users requirements, it scores very badly as compared to other trees
in some other dimensions (precision and generalization). Hence, while choosing
the models from Pareto front, the user can make an informed decision while
considering the requirements as well as evaluating different dimensions.

7 Conclusions and Future Work

In this paper we introduced two algorithms in order to incorporate and verify
domain knowledge in a discovered process model. The proposed verification al-
gorithm provides a comprehensive way of validating whether the constraints are
satisfied by the process tree. In the current approach we consider a subset of De-
clare templates. In the future this could be extended to include all the Declare
templates. The current modification algorithm uses a brute force approach and
exhaustively generates multiple process trees. However, currently the modifica-
tion algorithm does not consider the user constraints during the modification
process. In the future, we would like to improve upon the modification algo-
rithm by modifying the process tree in a smarter way (for eg. using genetic or
greedy algorithms), to optimise the modification approach and/or ensure cer-
tain guarantees in the modified process trees. Another future direction could be
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to incorporate domain knowledge at different stages, for example when logging
event data or during the discovery phase.
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