A Recommendation System for Predicting Risks across
Multiple Business Process Instances

Raffaele Conforti®, Massimiliano de Leoni®?, Marcello La Rosa®4,

Wil M. P. van der Aalst®®, Arthur H. M. ter Hofstede®"

?Queensland University of Technology, Australia
{raffaele.conforti,m.larosa,a.terhofstede} @qut.edu. au
b Eindhoven University of Technology, The Netherlands, Australia
{m.d.leoni,w.m.p.v.d.aalst} @Qtue.nl
¢ University of Padua, Italy
dNICTA Queensland Lab, Brisbane, Australia

Abstract

This paper proposes a recommendation system that supports process participants in taking risk-informed
decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves
decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed
to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a
process participant needs to provide input to the process, e.g. by selecting the next task to execute or by
filling out a form, we suggest the participant the action to perform which minimizes the predicted process
risk. Risks are predicted by traversing decision trees generated from the logs of past process executions,
which consider process data, involved resources, task durations and other information elements like task
frequencies. When applied in the context of multiple process instances running concurrently, a second
technique is employed that uses integer linear programming to compute the optimal assignment of resources
to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The
recommendation system has been implemented as a set of components on top of the YAWL BPM system
and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a
large insurance company. The results, based on a simulation of the real-life scenario and its comparison with
the event data provided by the company, show that the process instances executed concurrently complete
with significantly fewer faults and with lower fault severities, when the recommendations provided by our
recommendation system are taken into account.

Keywords: business process management, risk management, risk prediction, job scheduling, work

distribution, YAWL.

1. Introduction

A process-related risk measures the likelihood and the severity that a negative outcome, also called fault,
will impact on the process objectives [1]. Failing to address process-related risks can result in substan-

Preprint submitted to Decision Support Systems November 11, 2014

tial financial and reputational consequences, potentially threatening an organization’s existence. Take for
example the case of Société Générale, which went bankrupt after a € 4.9B loss due to fraud.

Legislative initiatives like Basel II [2] and the Sarbanes-Oxley Act! reflect the need to better manage
business process risks. In line with these initiatives, organizations have started to incorporate process risks
as a distinct view in their operational management, with the aim to effectively control such risks. However,
to date there is little guidance as to how this can be concretely achieved.

As part of an end-to-end approach for risk-aware Business Process Management (BPM), in [3, 4, 5] we
proposed several techniques to model risks in executable business process models, detect them as early as
possible during process execution, and support process administrators in mitigating these risks by applying
changes to the running process instances. However, the limitation of these efforts is that risks are not
prevented, but rather acted upon when their likelihood exceeds a tolerance threshold. For example, a
mitigation action may entail skipping some tasks when the process instance is very likely to exceed the defined
maximum cycle time. While effective, mitigation comes at the cost of modifying the process instance, often
by skipping tasks or rolling back previously-executed tasks, which may not always be acceptable. Moreover,
we have shown that it is not always possible to mitigate all process risks [4]. For example, rolling back a
task for the sake of mitigating a risk of cost overrun, may not allow the full recovery of the costs incurred
in the execution of that task.

To address these limitations we propose a recommendation system that supports process participants
in taking risk-informed decisions, with the aim to reduce process risks preemptively. A process participant
takes a decision whenever they have to choose the next task to execute out of those assigned to them at
a given process state, or via the data they enter in a user form. This input from the participant may
influence the risk of a process fault to occur. For each such input, the technique returns a risk prediction in
terms of the likelihood and severity that a fault will occur if the process instance is carried out using that
input. This prediction is obtained via decision trees which are trained using historical process data such
as process variables, resources, task durations and frequencies. The historical data of a process is observed
using decision trees which are built from the execution logs of the process, as recorded by the IT systems of
an organization.

This way, the participant can take a risk-informed decision as to which task to execute next, or can
learn the predicted risk of submitting a form with particular data. If the instance is subjected to multiple
potential faults, the predictor can return the weighted sum of all fault likelihoods and severities, as well as
the individual figures for each fault. The weight of each fault can be determined based on the severity of
the fault’s impact on the process objectives.

The above technique only provides “local” risk predictions, i.e. predictions relative to a specific process

Lyww.gpo.gov/fdsys/pkg/PLAW-107publ204

https://www.researchgate.net/publication/220829876_History-Aware_Real-Time_Risk_Detection_in_Business_Processes?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/258100473_Real-Time_Risk_Monitoring_in_Business_Processes_A_Sensor-based_Approach?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==

instance. In reality, however, multiple instances of (different) business processes may be executed at any
time. Thus, we need to find a risk prediction for a specific process instance that does not affect the prediction
for other instances. The interplay between risks relative to different instances can be caused by the sharing
of the same pool of process participants: two instances may require the same scarce resource. In this setting,
a sub-optimal distribution of process participants to the set of tasks to be executed, may result in a risk
increase (e.g. overtime or cost overrun risk). To solve this problem, we equipped our recommendation system
with a second technique, based on integer linear programming, which takes input from the risk prediction
technique, to find an optimal distribution of process participants to tasks. By optimal distribution we mean
one that minimizes the overall execution time (i.e. the time taken to complete all running instances) while
minimizing the overall level of risk. This distribution is used by the recommendation system to suggest
process participants the next task to perform.

We operationalized our recommendation system on top of the YAWL BPM system by extending an
existing YAWL plug-in and by implementing two new custom YAWL services. This implementation prompts
process participants with risk predictions upon filling out a form or for each task that can be executed. We
then evaluated the effectiveness of our recommendation system by conducting experiments using a claims
handling process in use at a large insurance company. With input from a team of risk analysts from the
company, this process has been extensively simulated on the basis of a log recording one year of completed
instances of this process. The recommendations provided by our recommendation system significantly
reduced the number and severity of faults in a simulation of a real life scenario, compared to the process
executed by the company as reflected by the event data. Further, the results show that it is feasible to
predict risks across multiple process instances without impacting on the execution performance of the BPM
system.

The remainder of this paper is organized as follows. Section 2 discusses related work. Section 3 contex-
tualizes the recommendation system within our approach for managing process-related risks, while Section 4
presents the YAWL language as part of a running example. Next, Section 5 defines the notions of event logs
and faults which are required to explain our techniques. Section 6 describes the technique for predicting
risks in a single process instance while Section 7 extends this technique to the realm of multiple process
instances running concurrently. Section 8 and Section 9 discuss the implementation and evaluation of the
recommendation system, respectively. Finally, Section 10 concludes the paper. The Appendix provides the
formal definition of a YAWL specification, the algorithms to generate a prediction function, and technical

proofs of two lemmas presented in Section 7.

2. Related Work

The approach presented in this paper is related to work on risk prediction, job scheduling, operational
support and work-item distribution for business processes. In this section we review the state of the art in

these fields to motivate the need for our approach.

2.1. Risk Prediction

Various risk analysis methods such as OCTAVE [6], CRAMM [7] and CORAS [8] have been defined which
provide elements of risk-aware process management. Meantime, academics have recognized the importance of
managing process-related risks. However, risk analysis methods only provide guidelines for the identification
of risks and their mitigation, while academic efforts mostly focus on risk-aware BPM methodologies in
general, rather than on concrete approaches for risk prediction [9].

An exception is made by the works of Pika et al. [10] and Suriadi et al. [11]. Pika et al. propose
an approach for predicting overtime risks based on statistical analysis. They identify five process risk
indicators whereby the occurrence of these indicators in a trace indicates the possibility of a delay. Suriadi
et al. propose an approach for Root Cause Analysis based on classification algorithms. After enriching a log
with information like workload, occurrence of delay, and involvement of resources, they use decision trees
to identify the causes of overtime faults. The cause of a fault is obtained as a disjunction of conjunctions
of the enriching information. Despite looking at the same problem from different prospectives, these two
approaches result to be quite similar. These two approaches suffer from the limitation of not considering
the data prospective. Further, they limit their scope to the identification of indicators of risks or of causes
of faults to support overtime risks only.

In previous work, we presented a wider approach which aims to bridge the gap between risk and process
management. This approach consists of two techniques. The first one [3, 5] allows process modelers to
specify process-related faults and related risks on top of (executable) process models, and to detect them
at run-time when their risk likelihood exceeds a tolerance threshold. Risks are specified as conditions over
control-flow, resources and data aspects of the process model. The second technique [4] builds on top of the
first one to cover risk mitigation. As soon as one or more risks are detected which are no longer tolerable,
the technique proposes a set of alternative mitigation actions that can be applied by process administrators.
A mitigation action is a sequence of controlled changes on a process instance affected by risks, which takes
into account a snapshot of the process resources and data, and the current status of the system in which
the process is executed.

For a comprehensive review and comparative analysis of work at the intersection of risk management

and BPM, we refer to [9].

https://www.researchgate.net/publication/220829876_History-Aware_Real-Time_Risk_Detection_in_Business_Processes?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/262524711_Lecture_Notes_in_Computer_Science?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/258100473_Real-Time_Risk_Monitoring_in_Business_Processes_A_Sensor-based_Approach?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/220694286_Model-Driven_Risk_Analysis_-_The_CORAS_Approach?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/235950058_Predicting_Deadline_Transgressions_Using_Event_Logs?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/235950056_Root_Cause_Analysis_with_Enriched_Process_Logs?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/291846215_The_use_of_the_ccta_risk_analysis_and_management_methodology_CRAMM?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==

2.2. Job Scheduling

The problem of distributing work items to resources in business process execution shares several simi-
larities with the job-shop scheduling [12, 13, 14, 15]. Job-shop scheduling concerns M jobs that needs to be
assigned to a N machines, with N < M, while trying to minimize the make-span, i.e. the total length of the
schedule. Jobs may have constraints, e.g. job i needs to finish before job j can be started, certain jobs can
only be performed by given machines.

Unfortunately, these approaches are intended for different settings and cannot be specialized for risk-
informed work-item assignment. To our knowledge, techniques of job-shop scheduling are unaware of the
concept of cases or process instances, since typically jobs are not associated with a case.

The concept of case is crucial when dealing with process-aware information systems. Work items are
executed within process instances and many process instances can be running at the same time, like so
many work items may be enabled for execution at the same time. Different instances may be worked on
by the same resources and, hence, the allocation within a instances may affect the performance of other
instances. Without considering the instances in which work items are executed, an important aspect is not
considered and, hence, the overall allocation is not really optimized. Moreover, applying job-scheduling for
work-item distribution, such work items will be distributed with a push method, i.e. a work item is pushed
to a single qualifying resource. This is also related to the fact the jobs are usually assumed to be executed
by machines, whereas, in process-aware information systems, work items are normally being executed by
human resources. Work items may also be executed by automatic software services, but this is not the
situation in the majority of setting. In [16], it is shown that push strategies already perform very poorly
when the resource work-load is moderately high. Therefore, work items ought to be distributed with a pull
mechanism, i.e. enabled work items are put in a common pool and offered to qualifying resources, which
can freely pick any of them. As a matter of fact, a pull metho is far the most common used in current-day

process-aware information systems.

2.8. Operational Support

The work proposed in this paper is also related to body of work that is concerned with devising frame-
works and architectures to provide operational support for business processes as a service. For instance,
Nakatumba et al. [17] propose a service for operational support which generalizes what is proposed in [18].
This service is implemented in ProM, a pluggable framework to implement process-aware techniques in a
standardized environment. On its own, the service does not implement recommendation algorithms but pro-
vides an architecture where such algorithms can be easily plugged in. For instance, the prediction technique
in [19] is an example of algorithm plugged into this architecture (more details on this work are provided

in the next subsection). Another example is the work in [20], which concerns a recommendation algorithm

https://www.researchgate.net/publication/222302327_A_reinforcement_learning_approach_to_dynamic_resource_allocation?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/222994569_Resource_allocation_via_dynamic_programming_in_activity_networks?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/229124496_Introduction_to_Sequencing_and_Scheduling?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/2859318_A_Reinforcement_Learning_Approach_to_Job-shop_Scheduling?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/220591295_Dynamic_Work_Distribution_in_Workflow_Management_Systems_How_to_Balance_Quality_and_Performance?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/221586026_Supporting_Flexible_Processes_through_Recommendations_Based_on_History?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/235736569_Monitoring_Business_Constraints_with_the_Event_Calculus?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/262917441_Predictive_Monitoring_of_Business_Processes?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==

Table 1: Comparison of different approaches for operational support in Process-aware Information Systems

Approach Weight Process Perspectives Optimal Objective Assignment
Computation Distribution Method

Kim et al. [21] Dynamic Control-flow, Resource - Time, Cost -

Yang [22] Static - Instance level Customizable PUSH

Kumar et al. [23] Dynamic Control-flow, Resource Instance level Cooperation® PUSH

Kumar et al. [16] Static - Instance level Suitability, Urgency, Workload pusH/PULLP

Huang et al. [24] Dynamic Control-flow, Resource, Data, Time Instance level Customizable PUSH

van der Aalst et al. [25] Dynamic Control-flow - Time -

Folino et al. [26] Dynamic Control-flow, Resource, Data, Time - Time -

van der Spoel et al. [27] Dynamic Control-flow - Cost -

Cabanillas et al. [28] Static Control-flow, Resource Process level User preference® PUSH

Barba et al. [29] Static Control-flow, Resource Instance level Time PULL

Maggi et al. [19] Dynamic Control-flow, Resource, Data - Customizable LTL formulasd -

? Work items are distributed to maximize the quality of the cooperation among resources. This approach assumes that some resources can cooperate

better than others when working on a process instance.
b

Resources declare their interest in picking some work items for performance. The approach assigns each work item to the interested resource that
guarantees the better distribution.

At design time, users provide preferences for work items. At run time, the system allocates work items to resources to maximize such preferences.
d

The expressiveness power of business goals in the form of a single LTL formula is lower than what our approach allows for. In principle, multiple

LTL formulas can be provided though one has to balance contrasting recommendations for the satisfiability of such formulas.

based on monitoring the satisfaction of business constraints. This work does not make any form of prediction
nor automatic optimal work-items’ distribution.
As a matter of fact, there is no conceptual or technical limitation that would prevent our approach from

being implemented as a plug-in for an operational-support service.

2.4. Work-item distribution

Our work on work-item distribution to minimize risks shares commonalities with Operational support
and Decision Support Systems (DSSs). We aim to provide recommendations to process participants to take
risk-informed decisions. Our work fully embraces the aim of these systems to improve decision making
within work systems [30], by providing an extension to existing process-aware information systems.

Mainstream commercial and open-source BPM systems do not feature work-item prioritization. They
only allow one to indicate a static priority for tasks (e.g. low, medium or high priority), independently of the
characteristics of the process instance and of the qualified resources. Similarly, the YAWL system, which is
the one we extended, does not provide means for operational support, besides the extension proposed by de
Leoni et al. [31], which, however, defines very basic metrics only.

Several approaches have been proposed in the literature. Table 1 summarizes and compares the most

significant ones, using different criteria:

Weight Computation. In order to perform an optimal distribution, every work item needs to be assigned
a weight, which may also depend on the resources that is going to perform it or on the moment in
time when such work item is performed. These weights can be defined either statically by analysts or

dynamically computed on the basis of the past history recorded in an event log.

https://www.researchgate.net/publication/222429460_A_work_system_view_of_DSS_in_its_fourth_decade?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/235949869_Visual_Support_for_Work_Assignment_in_Process-Aware_Information_Systems_Framework_Formalisation_and_Implementation?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==

Process Perspective. When weights are dynamically defined, they may be computed considering different

perspectives: control-flow, resources, data and time.

Optimal Assignment. The optimization of work-item distribution can be computed by considering single

instances in isolation or trying to optimize the overall performances of all running instances.

Objective. The work-item distribution can be optimized with respect to several factors, such as minimizing
the cost, time or maximizing the cooperation. Only few approaches allow one to customize the objective

function to minimize/maximize.

Assignment Method. Once an optimal distribution is computed, each work item can be pushed to a single
qualified resource (push method), or it can be put in a common pool and simply recommended to a
given resource within this pool, that can then pull the work item (pull method). Note that in this last
method different resources within the same pool other than the one the work item was recommended

to, may still execute the work item. method

Among the available approaches only the one by Cabanillas et al. [28] computes the optimal allocation
of resources at the process level. Specifically, this work proposes a priority-based resource allocation, where
resources are ranked according to preferences defined using the Semantic Ontology of User Preferences [32].
Once a work item needs to be executed it is pushed to the resource ranking the highest on the basis of the
expressed preferences.

Among the approaches providing optimal distribution only two approaches support a pull assignment.
The approach of Barba et al. [29] optimizes process performances, using constraint programming (planning
and scheduling problem) where constrains are defined considering control-flow and resources only. On the
other hand, the approach of Kumar et al. [16] aims to obtain the right balance between execution time
and quality. This approach uses work allocation metrics and various quality attributes to find the optimal
allocation strategy keeping into consideration the preference of resources for certain work items.

The approach of Yang [22], similar to all the approaches discussed so far, assigns a static weight to
each work item. This approach optimizes process execution time and total execution cost according to
user preferences. Preferences are defined using a multi-attribute utility function that is optimized using
the particle swarm optimization algorithm. A second approach by Kumar et al. [23], and the approach of
Huang et al. [24], conclude the list of approaches providing optimal distribution of work items. Kumar et
al. [23] propose an approach for optimal resource cooperation using integer linear programming to identify
the group of resources with the best synergy to perform a process instance while Huang et al. [24] propose
to use task operation models.

There are also approaches that focus on prediction only. Van der Aalst et al. [25] propose an approach

to predict total execution time and remaining execution time. The approach uses logs to generate transition

7

https://www.researchgate.net/publication/220591295_Dynamic_Work_Distribution_in_Workflow_Management_Systems_How_to_Balance_Quality_and_Performance?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/222376776_Utility-based_decision_support_system_for_schedule_optimization?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/262205299_Optimal_Resource_Assignment_in_Workflows_for_Maximizing_Cooperation?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/262205299_Optimal_Resource_Assignment_in_Workflows_for_Maximizing_Cooperation?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/260652115_A_Task_Operation_Model_for_Resource_Allocation_Optimization_in_Business_Process_Management?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/260652115_A_Task_Operation_Model_for_Resource_Allocation_Optimization_in_Business_Process_Management?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/220503961_Time_prediction_based_on_process_mining?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/221586305_Supporting_the_Optimized_Execution_of_Business_Processes_through_Recommendations?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==

systems annotated with timing information. Transition systems are employed to provide predictions using
similarly completed executions as a reference. Folino et al. [26] use a combination of clustering techniques
and transition systems. Using clustering they identify process variants in a log and for each cluster they
generate a transition system. When a prediction is required, using decision trees the authors identify which
cluster the current instance belongs to, and then use the associated transition system to provide a prediction.

Van der Spoel et al. [27] propose an approach to predict the cash flow of a process. This approach uses
a combination of process flow prediction, i.e. predicting how the process execution will proceed, and cost
prediction, i.e. predicting how much the execution of a predicted activity will cost. Kim et al. [21] propose
the use of decision trees to minimize completion time or total labor cost, where the resource with the lowest
predicted completion time or total labor cost is suggested.

Finally, Maggi et al. [19] propose a predictive approach to prevent process constraints violation. Users
can define linear temporal logic constraints at any point in time during the execution of a process. Then,
when a prediction is required, the approach retrieves all traces having a similar prefix of the current instance.
These instances are then used to generate a decision tree that is used to predict how the process execution
should proceed to satisfy the predefined constraints.

There are also approaches (e.g.,[33, 34, 35]) that mine association rules from event logs to define the
preferable distribution of work items. However, in the end a resource manager needs to manually assign
work items to resources. Manual distributions are clearly inefficient because they are both unlikely to be
optimal and some work items probably remain unassigned for a certain amount of time until the manager
takes charge of their assignment. Moreover, the mined rules consider process instances in isolation.

On the basis of the insights emerging from Table 1, we propose a technique that satisfies the following
requirements: it should i) use information form different process perspectives to provide predictions; ii)
use such predictions to compute an optimal distribution that is not local to individual process instances
(instance level) but global across all running instances, which can be from different processes (process level);
iii) use user-defined faults as objective functions; iv) leave process participants the final choice of whether
to execute a recommended work item (pull assignment method).

This paper is an extended version of the conference paper in [36]. With respect to the conference paper,
the main extension relates to the provision of support for multi-instance risk prediction. This is achieved by
combining our existing technique for risk estimation [36], with a technique for identifying the best distribution
of resources to work items of concurrent process instances, using integer linear programming. This technique
has been implemented via a new YAWL custom service, the Multi Instance Prediction Service. Further, the
evaluation has been completely redone using a real-life business process in use at a large insurance company.
With input from a team of risk analysts from the company, this process has been extensively simulated
on the basis of an event log recording one year of completed instances of this process, to show that it is

feasible to predict risks across multiple process instances without impacting on performance, and that the

8

https://www.researchgate.net/publication/248399593_Discovering_Context-Aware_Models_for_Predicting_Business_Process_Performances?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/257956792_Process_Prediction_in_Noisy_Data_Sets_A_Case_Study_in_a_Dutch_Hospital?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/228540527_Life-cycle_support_for_staff_assignment_rules_in_process-aware_information_systems?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/220217445_Mining_association_rules_to_support_resource_allocation_in_business_process_management?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/220594061_A_semi-automatic_approach_for_workflow_staff_assignment?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/262524923_Supporting_Risk-Informed_Decisions_during_Business_Process_Execution?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/262524923_Supporting_Risk-Informed_Decisions_during_Business_Process_Execution?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/262917441_Predictive_Monitoring_of_Business_Processes?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==
https://www.researchgate.net/publication/291196998_Constructing_Decision_Trees_from_Process_Logs_for_Performer_Recommendation?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==

recommendations provided by our recommendation system significantly reduce the number and severity of

faults, for all instances simulated.

3. Risk Framework

In this section we elaborate on the type of process-related risks that we can address and on the basis of
this, we illustrate an overarching approach for managing process-related risks within which the contribution

of this paper fits.

8.1. Process-related Risk

In this paper we focus on process-related risks that can be identified within the boundaries of a business
process. In particular, we only consider process-related risks which depend on information available during
process execution, e.g. task input and output data, allocated resources, time performance. This implies
that process-related risks depending on information outside the process boundaries, i.e. the process context
(e.g. market fluctuations or weather forecast), cannot be detected. For this reason organizational risks in
general are not addressed, such as those related to partners going bankrupt, or price of the fuel going up.
Moreover, since we require process execution information we only consider executable business processes.
These processes should either be executed by a BPMS on the basis of a process model or be supported by
an information system that produces event logs [37], i.e. logs of process-related information which we can

use to reconstruct the process instances being executed by aggregating events, such that each instance can

be unequivocally identified.

3.2. Risk Approach

The technique proposed in this paper can be seen as part of a wider approach for the management of
process-related risks. This approach aims to enrich the four phases of the traditional BPM lifecycle (Process
Design, Implementation, Enactment and Diagnosis) [38] with elements of risk management (cf. Figure 1).

Before the Process Design phase, Risk-annotated

models

Risk-annotated
Process workflows

Implementation

Risk-aware workflow
implementation

we define an initial phase, namely

Risk Identification, where existing

techniques for risk analysis such as / Risk \ Risks

Process

Process Design

. : Identification Enactment
Fault Tree Analysis [39] or Root | : — Riskaware ST
Risk analysis 5 .
. (l) process modelling ‘ workflow execution
Cause Analysis [40] can be used to === Ris} rel
Imprgvent Chirrent
. . . .) process|data
identify possible risks of faults that Reporting Process Diagnosis
1 1 Risk monitoring and -
may eventuate during the execution Py onitoring r——
Qigaton process data

Improvements

of a business process. Faults and

their risks identified in this phase are Figure 1: Risk-aware BPM lifecycle.

https://www.researchgate.net/publication/220693003_Process_Mining_Discovery_Conformance_and_Enhancement_of_Business_Processes?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==

mapped onto specific aspects of the process model during the Process Design phase, obtaining a risk-
annotated process model. In the Process Implementation phase, a more detailed mapping is conducted
linking each risk and fault to specific aspects of the process model, such as the content of data variables and
resource states. In the Process Enactment phase such a risk-annotated process model can be executed to
ensure risk-aware process execution. Finally, in the Process Diagnosis phase, information produced during
Process Enactment is used in combination with historical data to monitor the occurrence of risks and faults
as process instances are executed. This monitoring may trigger mitigation actions in order to (partially)
recover the process instance from a fault.

The technique presented in this paper fits in this latter phase, since it aims to provide run-time support
in terms of risk prediction, by combining information on risks and faults with historical data. The techniques
developed to support the other phases of our risk-aware BPM approach fall outside the scope of this paper,

but have beed addressed in our earlier work [3, 5, 4].

4. YAWL Specification and Running Example

We developed our technique on top of the YAWL language [41] for several reasons. First, this language is
very expressive as it provides comprehensive support for the workflow patterns?, patterns covering all main
process prospective such as control-flow, data-flow, resources, and exceptions. Further, it is an executable
language supported by an open-source BPM system, namely the YAWL System. This system is based on a
service-oriented architecture, which facilitates the seamless addition of new services, like the ones developed
as part of this work. Further, the open-source license facilitates its distribution among academics and
practitioners (the system has been downloaded over 100,000 times since its first inception in the open-source
community). However the elements of the YAWL language used by our technique are common to all process
modeling languages, so our technique can in principle be applied to other executable process modeling
languages such as BPMN 2.0.

In this section we introduce the basic ingredients of the YAWL language and present them in the context
of a running example. This example, whose YAWL model is shown in Figure 2, captures the Carrier
Appointment subprocess of an Order Fulfillment process, which is subjected to several risks. This process is
inspired by the VICS industry standard for logistics [42], a standard endorsed by 100+ companies worldwide.

The Carrier Appointment subprocess (see Figure 2) starts when a Purchase Order Confirmation is
received. A Shipment Planner then estimates the trailer usage and prepares a route guide. Once ready, a
Supply Officer prepares a quote for the transportation indicating the cost of the shipment, the number of

packages and the total freight volume.

2w workflowpatterns.com

10

QO —O——e—O—s—0O

Arrange Arrange Create Carrier
[Single Pickup Delivery Manifest
packagel Appointment Appointment
{0 Q2O
_ Arrange
Estimate Delivery

Trailer Usage Appointment [no delivery

@ [TLrﬁ:l;(I:)haadri O ’l:@ informatifan] O
i epare)

Receive Cr le B|II of

Confirmation Transportation Ladln
order Quote [else]
[U
A- - Arrange -1
() » O Arrange g
i Arrdhge Arra ge Pickup De““gry i
Prepare Route Delifrery Pickup Appointment

Guide Appointment Madify Pickup

\Appointment [Appointment Appointment

[Full
Truckload] C) __[else: both] ! O

Deliyery

Tnput AND
Condition Join__Split - .* ’ . Appointment
Flow N A F «) _[l}o pndéup . 2
2 o T LU ek, i@
5h|pment

Output User XOR . [Pickup and Produce
Condition Task Join Split Information C) ’O delivery Shipment

@ Document

Arrange

“ ' ‘ ’ information Notice
Pickup completed
Automated ((Appointment
Condition Task Jnm l : -
Arrange Arrange
O[] e Ol) (8]

information] Arrange Modify Pickup Modify
Delivery Appointment Delivery
Appointment Appointment

Figure 2: The carrier appointment subprocess of an order fulfillment process, shown in YAWL.

If the total volume is over 10,000 lbs a full trackload is required. In this case two different Client Liaisons
will try to arrange a pickup appointment and a delivery appointment. Before these two tasks are performed,
a Senior Supply Officer may create a Shipment Information document. In case the Shipment Information
document is prepared before the appointments are arranged, a Warehouse Officer will arrange a pickup
appointment and a Supply Officer will arrange a delivery appointment, with the possibility of modifying
these appointments until a Warehouse Admin Officer produces a Shipment Notice, after which the freight
will be picked up from the Warehouse.

If the total volume is up to 10,000 lbs and there is more than one package, a Warehouse Officer arranges
the pickup appointment while a Client Liaison may arrange the delivery appointment. Afterwards, a Senior
Supply Officer creates a Bill of Lading, a document similar to the Shipment Information. If a delivery
appointment is missing a Supply Officer takes care of it, after which the rest of the process is the same as
for the full trackload option.

Finally, if a single package is to be shipped, a Supply Officer has to arrange a pickup appointment, a
delivery appointment, and create a Carrier Manifest, after which a Warehouse Admin Officer can produce
a Shipment Notice.

In YAWL, a process model is encoded via a YAWL specification. A specification is made up of one or
more nets (each modeling a subprocess), organized hierarchically in a root net and zero or more subnets.
Each net is defined as a set of conditions (represented as circles), an input condition, an output condition,
and a set of tasks (represented as boxes). Tasks are connected to conditions via flow relations (represented
as arcs). In YAWL trivial conditions, i.e. those having a single incoming flow and a single outgoing flow, can
be hidden. To simplify the discussion in the paper, without loss of generality, we assume a strict alternation

11

between tasks and conditions.

Conditions denote states of execution, for example the state before executing a task or that resulting
from its execution. Conditions can also be used for routing purposes when they have more than one incoming
and/or outgoing flow relation. In particular, a condition followed by multiple tasks, like condition FTL in
Figure 2, represents a deferred choice, i.e. a choice which is not determined by some process data, but rather
by the first process participant that is going to start one of the outgoing tasks of this condition. In the
example, the deferred choice is between tasks Arrange Delivery Appointment, Arrange Pickup Appointment
and Create Shipment Information Document, each assigned to a different process participant. When the
choice is based on data, this is captured in YAWL by an XOR-split, if only one outgoing arc can be taken
like after executing Prepare Transportation Quote. If one or more outgoing arcs can be taken it is captured
by an OR-split like after executing Create Shipment Information Document. Similarly, we have XOR~joins
and OR-joing that merge multiple incoming arcs in to one. If among all the incoming arcs only one is active
we use a XOR-~join like before executing Produce Shipment Notice, while if among all incoming arcs one or
more arcs are active we use a OR~join like before executing task Create Bill of Lading. Finally, an AND-split
is used when all outgoing arcs need to be taken, like after Receive Confirmation Order, while an AND-join
is used to synchronize parallel arcs like before executing Prepare Transportation Quote. Splits and joins are
represented as decorators on the task’s box.

Tasks are considered to be descriptions of a piece of work that forms part of the overall process. Thus,
control-flow, data, and resourcing specifications are all defined with reference to tasks at design time. At
runtime, each task acts as a template for the instantiation of one or more work items. A work item
w = (ta,id) is the run-time instantiation of a task ta for a process instance id.

A new process instance id is started and initialized by placing a token in the input condition of a YAWL
net. The token represents the thread of control and flows through the net as work items are executed. The
execution of a work item (ta,id) consumes one token from some of ta’s input conditions (depending on the
task’s type of join) and produces one token in some of ta’s output conditions (depending on the task’s type
of split). In YAWL, work items are performed by either process participants (user tasks) or software services
(automated tasks). An example of an automated task is Receive Confirmation Order in Figure 2, while an
example of user task is Estimate Trailer Usage.

Finally, the preset *t of a task ¢ is the set of its input conditions. Similarly, the postset ¢t* of a task ¢ is
the set of its output conditions. The preset and postset of a condition can be defined analogously.

The notions presented above are formalized in the Appendix.

5. Event Logs and Fault Severity
The execution of completed and running process instances can be stored in an event log:

12

Definition 1 (Event Log). Let T and V be a set of tasks and variables, respectively. Let U be the set of
values that can be assigned to variables. Let R be the set of resources that are potentially involved during the
execution. Let D be the universe of timestamps. Let ® be the set of all partial functions V' /4 U that define
an assignment of values to a sub set of variables in V. An event log L is a multiset of traces where each
trace (a.k.a. process instance) is a sequence of events of the form (t,r,d,®), wheret € T is a task, r € R is
the resource performing t, d € N is the event’s timestamp, ¢ € ® is an assignment of values to a sub set of

variables in V. In other words, £ € B((T x R x N x ®)*).3

Each completed trace of the event log is assigned a fault’s severity between 0 and 1, where 0 identifies
an execution with no fault and 1 identifies a fault with the highest severity. To model this, a risk analyst

needs to provide a fault function f. The set of all such functions is:
F=(TxRxNx®)"—][0,1]
In many settings, processes are associated with different faults. These faults can be combined together by

assigning different weights. Let us suppose to have n faults { f1, ..., fn} C F, we can have a composite fault:
~ o w; fi(o
flo) = Zig=eUl9) 5
Z1gi§n Wi

where w; is the weight of the fault f;, with 1 <i <mn.

A complete trace o of our Carrier Appointment process, can be affected by three faults:

Over-time fault. This fault is linked to a Service Level Agreement (SLA) which establishes that the
process must terminate within a predefined Maximum Cycle Time d,,.; (e.g. 21 hours), in order to
avoid pecuniary penalties that will incur as consequence of a violation of the SLA. The severity of the
fault grows with the amount of time that the process execution exceeds d,,.:- Let d, be the duration
of the process instance, i.e. difference between the timestamps of the last and first event of 0. Let dp,ax
be the maximum duration among all process instances already completed (including o). The severity

of an overtime fault is measured as follows:

ftime(0) = max (do = dmer 0 O)

max(dmax - dmct)

Reputation-loss fault. During the execution of the process when a “pickup appointment” or a “delivery
appointment” is arranged, errors with location or time of the appointment may occur due to a mis-
understanding between the company’s employee and the customer. In order to keep the reputation
high, the company wants to avoid these misunderstandings and having to call the customer again.
The severity of this fault is:

0 if tasks Modify Delivery Appointment and Modify Pick-up Appointment
do not appear in o
Jrep(o) = 1 if both Modify Delivery Appointment and Modify Pick-up Appointment
appear in o

0.5 otherwise

3B(X) is the set of all multisets over X

13

Cost Overrun fault. During the execution of this process, several activities need to be executed, and each
of these has an execution cost associated with it. Since the profit of the company decreases with a
higher shipping cost of a good (or goods), the company wants to reduce them. Of course, there is a
profit cost beyond which the company will not make any profit. The severity increases as the cost
goes beyond the profit cost. Let cpax be the greatest cost associated with any process instance that
has already been completed (including o). Let ¢, be the cost of o and ¢y be the profit cost. The

severity of a cost fault is:

. max(¢y, — Cmin, 0)
Jeost(c) = min (max(cmax — Cmin, 1)’ 1)
Moreover, we assume that the company considers Reputation-loss Fault to be less significant than the other
faults. The company could decide to define a composite fault where the reputation weights half:
fear(9) = (feost(0) + frime(0) + 0.5+ frep(0)) /2.5
The risk is the product of the estimation of the fault’s severity at the end of the process-instance execution
and the accuracy of such an estimation.

When a process instance is being executed, many factors may influence the risk and, ultimately, the
severity of a possible fault. For instance, a specific order in which a certain set of tasks is performed may
increase or decrease the risk, compared to any other. Nonetheless, it is opportune to leave freedom to
resources to decide the order of their preference. Indeed, there may be factors outside the system that let
resources opt for a specific order. For similar reasons, when there are alternative tasks that are all enabled for
execution, a risk-aware decision support may highlight those tasks whose execution yields less risk, anyway

leaving the final decision up to the resource.

6. Risk Estimation

We aim to provide work-items’ recommendation to minimize the risk corresponding to the highest product
of fault severity and likelihood. For this purpose, it is necessary to predict the most likely fault severity
associated with continuing the execution of a process instance for each enabled task. The problem of

providing such a prediction can be translated into the problem of finding the best estimator of a function.

Definition 2 (Function estimator). Let Xi,...,X,, be n finite or infinite domains. Let Y be a finite
domain. Let f : X1 x Xo x ... x X,, = Y. An estimator of function f is a function ¢y : Y —
X1 XXX XX X[00] *cyohy that, for eachy €Y, ¢ (y) returns a set of tuples (x1, ..., xyn, 1) where (x1,...,x,) €
(X1 x X X ... x X,,)) is an input domain tuple for which the expected output is y and l is the accuracy of

such an estimation. Moreover, (z1,...,%n,01) € V(Y1) A (Z1,...,&n,l2) € Yi(y2) = L =l Ayr = yo.

The function estimator is trained through a set of observation instances. An observation instance is a
pair (7, y) where 7 € X1 x Xo X ... %x X, is the observed input and y € Y is the observed output.
14

The function estimator can easily be built using a number of machine learning techniques. In this paper,
we employ the C4.5 algorithm to build decision trees. We decided to use decision tree classification, and
specifically the C4.5 algorithm, for the following reasons: i) it can handle both continuous and discrete
(categorical) attributes; ii) it can handle training data with missing attribute values; iii) it can build models
that can be easily interpreted; iv) it can deal with noise; v) it automatically finds a subset of the features
that are relevant to the classification (i.e. no need for feature selection); and vi) it automatically discretizes
continuous features. This last function helps us significantly simplify the problem of finding an optimal
distribution of work items to resources, as we will discuss in Section 7.

Decision trees classify instances by sorting them down in a tree from the root to some leaf node. Each
non-leaf node specifies a test of some attribute z1,...,z, and each branch descending from that node
corresponds to a range of possible values for this attribute. In general, a decision tree represents a disjunction
of conjunctions of expressions: each path from the tree root to a leaf corresponds to an expression that is,
in fact, a conjunction of attribute tests. Each leaf node is assigned one of the possible output values: if an
expression e is associated with a path to a leaf node 7, every tuple TeXixXox...xX, satisfying e is
expected to return y as output.

We link the accuracy of a prediction for () to the quality of e as classifying expression. Let I be
the set of observation instances used to construct the decision tree. Let I, = {(Z,y) € I | 2 satisfies e}
and Iy = {(Z,y) € I. | y = §}. The accuracy is | = |I.3|/|L.|; therefore, for all ((z1,...,2,),y) €
I, (x1,...,2n,1) € Yp(Y).

Figure 3 shows an example of a possible decision tree. It is the estimator ¢, of a function that returns
a value belonging to the set H containing the numbers between 0 and 1 with no more than 2 decimals. It is
obtained through a set of observation instances based on all data attributes generated during the execution
of the process. For example, having as data attributes a resource, a task, the cost of a good, and a process
instance’s elapsed time, we obtained the following function fz : Resource x Task x GoodCost x TimeFElapsed —
H. For instance, let us consider the value y = 0.6. Analyzing the tree, the value is associated with two
expressions: e; is (Resource = MichaelBrown A Task = ArrangePickupAppointment) and ey is (Resource #
MichaelBrown A GoodCost < 3157 A TimeFElapsed < 30 A Task = CreateShipmentInformationDocument).
Let us suppose that, among observation instances (Resource, Task, GoodCost, TimeFElapsed,y) s.t. e; or es
evaluates to true, y = 0.6 occurs 60% or 80% of times, respectively. Therefore, 14, (0.6) contains the tuples
(Resource, Task, GoodCost, TimeElapsed,0.6) satisfying e;, along with tuples (Resource, Task, GoodCost,
TimeElapsed, 0.8) satisfying e;. Regarding computational complexity, if decision trees are used, training
1y with m observation instances is computed in quadratic time with respect to the dimension n (i.e. the

number of attributes) of the input tuple, specifically O(n? - m) [43].

15

As mentioned before, it is necessary to predict the
most likely fault severity associated with continuing
the execution of a process instance with each task en-
abled for execution. Function estimators are used for
such a prediction.

Let N = (Tn,Cn, RN, Vn,Un, cany) be a YAWL
net. In order to provide accurate risks associated with
performing work items of a certain process instance,
it is important to incorporate the execution history
of that process instance into the analysis. In order
to avoid overfitting predictive functions the history
needs to be abstracted. Specifically, we abstract the
execution history as two functions: C, : Ty — R
denoting the last executor of each task and Cy : Ty —

N denoting the number of times that each task has Figure 3: An example of decision tree used to build a

been performed in the past. Pairs (¢, ¢) € Cr x Cy function estimator.

are called conteztual information. Given the execution trace of a (running) instance o’ € (Ty x Ry x Nx @),
we introduce function getContextinformation(o’) that returns the contextual information (c,, ¢;) that can be
constructed from o’.

Let @ be the set of all possible assignments of values to variables, i.e. the set of all partial functions
Vn # Uy. Each condition ¢ € C'y can be associated with a function f.: ® x ¢®* x Ry x Nx C. x C; — H.
If fo(b,t,7,n,cryct) =y, at the end of the execution of the process instance, the fault’s severity is going to
be y if the instance continues with resource » € Ry that performs task ¢ € ¢* at time n with contextual
information (¢, ¢;) when variables are assigned values as for function ¢. Of course, this function is not
known but it needs to be estimated, based on the behavior observed in an event log £. Therefore, we need
to build am estimator 1y, for f.. Let us consider condition crrz, (see Figure 2), and the associated function
estimator wfcpm. Let us suppose that the accuracy is 1, i.e. for each t € cppr®, waFTL (t) always returns 1.

If the execution is such that there is a token in FTL, GoodCost < 3157, executing tasks Arrange
Pickup Appointment, Arrange Delivery Appointment are associated with a risk of 0.2 and 0.45, respectively.
Conversely, executing task Create Shipment Information Document is given a risk of either 0.6 or 0.7,
depending on the moment in which task Create Shipment Information Document is started. Therefore, it
is evident that it is less “risky” to execute Arrange Pickup Appointment.

The generation of function estimators is obtained as follows. For each process instance in the log and for
each event generated during the execution of each process instance, we retrieve context information, time
elapsed, and data variables produced. These three elements together constitute an observation instance.

16

This observation instance is assigned to the decision point which precedes the activity generating the event.
Once all observation instances are generated, the observation instances associated with each decision point
are used to build the function estimator associated with the decision point, using, for example, decision
trees. In the Appendix we formalize this algorithm (see Algorithm 1).

In this section, we presented a technique to generate prediction functions. It is important to observe
that the number of risks that may eventuate during the execution of a process does not affect the prediction
algorithm, since we consider the combined risk level of all risks. Specifically, we do so by assigning a relative
weight to each risk. This weight system allows process administrators to fine tune the predictive function

on the basis of the relative importance of each risk.

7. Multi-Instance Work-Item Distribution

With the technique presented so far, each resource is given local risk advice as to what work item to
perform next, i.e. a resource is suggested to perform the work item with the lowest overall risk for that
combination of process instance and resource, without looking at other resources that may be assigned work
items within the same instance or in other instances running concurrently. Clearly, such a local work-item
distribution is not optimal, since work items have to compete for resources and this may not guarantee the
best allocation from a risk viewpoint. For example, let us consider two resources r; and ro and two work
items w, and wy such that the risk of r; performing w, is 0.2, and the risk of r; performing wj is 0.6,
while the risk of ro performing w, is 0.1 and the risk of 9 performing w, is 0.4. Moreover for the company
executing these work items, it is equally important to minimize the eventuation of risks as well as the overall
execution time. If w, is assigned to o because locally this resource has the lowest risk, r; will be forced to
perform wy leading to an overall risk of 0.7. Another option is to assign both work items to ry, yielding an
overall risk of 0.5. Both these solutions are non-optimal distributions: the former because the overall risk is
too high, the latter, despite the lower risk, because the workload between the two resources is unbalanced,
with the result of increasing the overall execution time.

In this section we combine our technique for risk prediction with a technique for computing an optimal
distribution of work items to resources (available or busy). By optimal distribution we mean a distribution
that minimizes the weighted sum of overall execution time and overall risk across all running instances. In
other words, the algorithm aims to balance the distribution of work items across resources while keeping
the risk low. This distribution can then be used to provide work item recommendations to resources, such
that these can be aided in selecting the best work item to perform. In the example above, the optimal
distribution is r1-w, and ro-wp with an overall risk of 0.6. While this is higher than 0.5 obtained with the

second solution, r1 and ro will work in parallel thus reducing the overall execution time.

17

7.1. Optimal Work-Item Distribution

Let f be a certain (composite) fault function and assuming we at time 7. Let I = {idy,...,id,} be the set
of running instances of N. Given an instance id € I, timeElapsed.(id) € N denotes the time elapsed since
instance id has started and varAssign,(id) € (Viy — Uy) is the current assignment of values to variables.

2TN XTI that associates each resource with the work items

Moreover, let us denote a function usey : Ry —
that he/she is executing within the set I of running process instances. Let WE be the set of work items

being executed, i.e. WE = Z usen(r). Let W C Ty x I be the set of work items that are enabled but not

reRy
started yet. Section 4 has discussed the concept of deferred choice, highlighting that some of the enabled

work items are mutually exclusive. Therefore, we introduce an equivalence relation ~ between elements of
W, such that w, ~ wy if, picking w, € W for execution disables w, € W or vice versa. Let W be the
partition of W according to relation ~.

For each enabled work item w € W, we perform an estimation time(w) of the expected duration of work
item w. For each started work item w € WE, we also perform an estimation time(w) of the amount of time
needed by w to be completed. To compute such estimations, we employ the technique proposed in [25] using
event log £ as input.

Let ¥ be the set of function estimators that are computed through Algorithm 1, using net N, event log
L and given fault function f as input. For each work item w € W, let us denote with risk, ,,; the risk of
starting a work item w at time t. For example, given a work item w, this can be computed by retrieving the
estimation function associated with each decision point preceding w and taking the maximum value of the
predicted risk: risk, ¢ = calcRisk(N,f,r,t,w,). See Algorithm 2 in the Appendix for a formal definition
of this algorithm.

Let maxTime = Z time(w) be the maximum duration of executing all work items that are

weWUWE
currently enabled and started. This corresponds to the situation in which work items are just executed

sequentially, i.e. a new work item starts only when no other work item is being executed. Given a resource
r € Ry and a work item (ta,id) € W such that ta € cany(r), we compute the set of moments in time in
which the risk of r performing (ta,id): start, ., = {t € [r,7 + mazTime] | risky s # riskywi—1}J {7}
Certainly, this can be naively computed by computing the risk for all moments in time between 7 and
7+maxTime. Nonetheless, it can be done more efficiently by observing the occurrences of splits on the time
variable that are present in the decision trees. For instance, let us consider the decision tree in Figure 3: the
only time reference is 30. This reference occurs in a root-to-leaf path in which resource r # Michael Brown
and Task = Create Shipment Information. Therefore, for each resource r € R\ { Michael Brown} and work-
item w = (Create Shipment Information,id) € W, start, ., = {7, elapsed(id)+30}. Moreover, for each work
item w = (ta,id) € W with ta # Create Shipment Information and for each resource r € R, start,,, = {7}.

Similarly, for each work item w = (ta,id) € W, start,o ,, = {7} with ' = Michael Brown.

18

https://www.researchgate.net/publication/220503961_Time_prediction_based_on_process_mining?el=1_x_8&enrichId=rgreq-6dfbabd3fa00dd4594803fac5018693a-XXX&enrichSource=Y292ZXJQYWdlOzI2ODUyNjQ2MDtBUzoxNjc1NDgwMTIyMTIyMjRAMTQxNjk1Nzk2NzI2Mw==

Given a work item w, a resource r and a time ¢, A, ,,(t) denotes the first moment ¢’ in time after ¢ in
which the risk changes, i.e. t' > t, ¢’ € start, ., and there exists no t” € start,,, such that ¢ > " > t. If
such a moment ¢’ does not exist, A, ., (t) = 7 + mazTime.

We formulate the problem of distributing work items as a Mixed-Integer Linear Programming (MILP)

problem. The following two sets of variables are introduced:

e for each resource r € Ry and work-item w = (ta,id) € W such that ta € cany(r), there exists a
variable x, ;. If the solution of the MILP problem is such that x, . : = 1, r is expected to start

performing w in interval between ¢ and A, ., (t), Ty w,+ = 1; otherwise, @, = 0;

o for each work item w € W U WE (i.e., running or enabled), we introduce a variable wa,.,,. If work
item w is not being executed at time 7 and is eventually distributed to resource 7, the MILP solution
assigns to wa, ., a value that is equal to the moment in time when resource r is expected to start work
item w. If w is not expected to be started by r, wa,,, = 0; if w is already being executed by r at time

T (i.e. w € WE), wa,,, is statically assigned value 7.

The MILP problem aims to minimize the weighted sum of the expected total execution time and the overall
risk: (o) 1

<X X < X X

min @7 War,w + (1) riSI(T,w,t Xr,w,tA
maxT ime
r2RNy w2W [WE T2RN w2W \can n (r) t2starty

where « € [0, 1] is the weight of the expected total execution time w.r.t. the overall risk.

This MILP problem is subject to a number of constraints:

o for each r € Ry and w = (ta,id) € W such that ta € cann(r), if r starts performing w in the interval
between ¢ and A, ,,(t), Z, 4, must be equal to 1 (and vice versa):

X'r,w,t = 1 » r,w(t) = Wa’r,w Awar,w ty (l)

e For each partition D € W, only one work item in D can be executed and it can only be executed by

one resource and can only start within one interval:

> > >
Xr',w,t =1 (2)
r2RN w2D\can (1) t2starty o

e Every resource r € Ry cannot execute more than one work item at any time. Therefore, for each

r € Ry and for each pairs of partitions D, Dy € W_:

X X <X X < x <X X
War w, Wa, w, time(Ws) Xrw,,t _ Walr, w, War w, time(Wa) Xrw,t 3)
wae2Dq wp2Do wp2Do tZStarthwb wp2Do wg2Dy wq2D1 t2starty w,

In the Appendix, we show how constraints in Equation 1 and in Equation 3 can be translated into an
equivalent set of linear constraints.

We observe that we can compute A, ,,(¢) only if we use a machine-learning method, such as decision trees,
that can automatically discretize continuous features such as the time feature in this case. By automatically

19

identifying those time moments that discriminate over risk values, we can split the time feature in time
intervals and thus base our predictions on such intervals (e.g., “if elapsed time < ¢t OR elapsed time > t”)
instead of working with individual time moments (“if elapsed time = ¢; OR elapsed time = t2 OR elapsed
time = t3...”). If such automatic discretization of continuous features was not available, we could not
compute A, ,,(t) and consequently we would need to introduce a different variable x, ., ; for each moment ¢
in time. This would lead to an increase of the complexity of finding a solution to the MILP problem, which
is exponential on the number of variables.

As an example of an instance of the class of MILP problems, let us consider a case where at time 7 we
want to schedule three work items w,,w;, and w., and we have two resources, r; and 7, who can perform
them. We know that w, and w; are mutually exclusive generating the following partitions Dy = {wq, wp},
and Dy = {w.}. Moreover, we know that the expected duration of each work item is time(w,) = 30 mins,
time(wy) = 10 mins, and time(w.) = 40 mins. We also know that the risk associated with each work
item does not change over time. Finally, we know that when performed by resource r; the work items
have the following expected risk levels: risk,, ., = 0.2, risk, 4, = 0.7, and risk,, ,_ -~ = 0.6 while
when performed by resource 7, the work items have the following expected risk levels: risky, w,, = 0.1,
T18kry w,,r = 0.7, and risk,, 4, - = 0.4.

The MILP problem for distributing work items will take the following form (assuming o = 0.5):

0:5
+ 80

minimize wWay, w, +War, w, +War, w, +Wary w, +War,,w, +War, w,.)
+05 (022 Xrq,we,r 07 Xppwy,r 06 Xepwer ¥ 011 Xeg g, r +0:7 Xpg oy r 014 Xeg wer)
subject to the following constraints:
either work item w, or w, is executed, whereas w. has to (instantiation of Equation 2):
Xrywa,r + Xeg wy,m + Xy wa,r + Xegwy,r = 1
Xy we,r F Xrgwe,r = 1
at any time, all resources, i.e. r; and rs, can only perform one work item (Equation 3):
War we Warw, Wariw, 30 Xejwe,r +10 Xepwyr _ War w, ¥ War w, Warw, 40 Xrjwer
Wary we Wargw, Wars,w, 30 Xrpwe,r +10 Xegwy,r . Wary,w, +FWarg w, Warg,w, 40 Xrpwe,r

instantiation of Equation 1 for resources r; and r; and work items w,, w;, and w.:

Xriwa,r =1 5 War uw, N War, w, < +80 Xriwe,r =1 5 Wars,w, N Waryw, < +80
XTl,UJb,T = 1 » Wa'f‘l ,T_Ub Awarl,ﬂjb < + 80 XTl,?Ub,T = 1 » Wa"‘z,?ljb Awa"’27ﬂ]b < + 80
Xrl,wc,-r = 1 > Warlvwc AwaTI sWe < + 80 XrlvaaT = 1 > Wa"‘va(ﬁ n WaerwC < + 80

20

The optimal solution to this problem is wa,, w, = 1, Way, w, = 0, War, w, = 0, War, w, = 0, Wary 4, =0,
Wy, w, = 1, Try war = 1, Trpwyr = 0, oy wor = 0, Ty r = 0, Ty oy, r = 0, Ty .~ = 1, that is a schedule

where resource r; performs work item w, and resource ry performs work item w..

7.2. Recommendations for Work Items Execution

After the optimal distribution is computed, we need to provide a recommendation to r for executing any
w € W N cany(r). For any work item w, the recommendation rec(w,r) is a value between 0 and 1, where
0 is assigned to the work item with the highest recommendation and 1 to the work item with the least one.
Let us consider an optimal solution s of the MILP problem to distribute work items while minimizing risks.

The work-item recommendations for each resource r are given as follows:

o If there exists a work item w € WNcany (r) such that z, ,, » = 1 for solution s, the optimal distribution
suggests w to be performed by r at the current time. Therefore, rec(w,r) = 0. For any other work
item w’, the value rec(w’,r) is strictly greater than 0 and lower than or equal to 1:

718Ky 00 7 4+ 118Ky 4 ¢
risky - +1

rec(w’,r) =
rec(w’,r) grows proportionally to risky, .o -, with rec(w’,r) = 1 if risk, .0 » = 1.

e Otherwise, r is supposed to start no work item at the current time. However, since recommendations
need to be provided also to resources that are not supposed to execute any work item, for each

w e W nNcann(r), we set rec(w,r) = risky .-

It is possible that the optimal distribution assigns no work item to a resource r at the current time. This is
the case when r is already performing a work item (i.e., no additional work item should suggested) or there
are more resources available than work items to assign.

Let us consider the problem illustrated at the end of Section 7.1. In this problem we have two resources
r1 and ro and three work items w,, wp, and w.. We recall that the expected risk levels associated with a
resource performing a given work item were: risky, ., = 0.2, risky, w, = 0.7, and risk,, ,_ - = 0.6 for
resource 71, and risky, v, = 0.1, ri8ky, 4, - = 0.7, and risk;, ., = 0.4 for resource ro. We can then derive
that the best allocation requires that resource ry performs work item w, and resource ro performs work item
we. Finally, when recommendations about which work item should be performed and by whom will they
be required, the recommendation system will return the following values: rec(r1,w,) = 0, rec(ri,wy