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Abstract— In practice, the development of process-aware infor-
mation systems suffers from a gap between conceptual business
process models and executable workflow specifications. Because
of this gap, conceptual models are hardly reused as execution
templates. In this paper, we address the notorious “OR-join prob-
lem” that is partly responsible for this gap. At the conceptual level
people frequently use OR-joins. However, given their non-local
semantics, OR-joins cannot be mapped easily onto executable
languages. In particular, we present a new approach to map a
conceptual process model with OR-joins (expressed in terms of
an EPC) onto an executable model without OR-joins (expressed
in terms of a Petri net). Although we used an EPC process model
as a running example, the approach is equally applicable to
other process modeling languages that offer OR-joins as (e.g.
BPMN). Moreover, the resulting Petri net can be mapped onto
other execution languages such as BPEL. All of this has been
implemented in the context of the ProM framework.

I. INTRODUCTION

In recent years, business process modeling is increasingly
used for the development of Process-Aware Information Sys-
tems (PAIS) [16] on an enterprise scale. In this context,
business process models can serve (1) as a conceptual repre-
sentation of the system such as in case of the SAP Reference
Model [19], or (2) as a specification of an executable workflow
process, if web service compositions are defined, for example,
with BPEL [4]. While both these modeling scenarios should
smoothly work together in theory, it can be observed that
there is a gap in practice (see e.g. [29, p.141]) such that
conceptual models are hardly reused in the implementation
phase. A better integration of both application scenarios is not
only desirable for streamlining the design process, but also
for a more consistent business evaluation of processes that are
executed by workflow systems.

There are several explanations for the gap between concep-
tual process modeling and executable workflow specification:
the divergent terminology of business analyst and systems
engineers, the different degree of technical detail, and the
heterogeneous modeling tools that are used. These issues have
in common that they can be soothed, at least partially, by
training people, standardizing terms and concepts, or specify-
ing interfaces. Beyond that there is one specific problem that
is of a theoretical nature: several business process modeling
languages, such as Event-driven Process Chains (EPC) [18]
or BPMN [27], offer an OR-join synchronization element that

cannot be directly transformed to most executable languages.
The reason is the non-local semantics of the OR-join.

In Figure 1, activity act is preceded by an OR-join (∨
denotes an OR in EPC notation). This means that it can only
be executed if there is at least one input and no more inputs
can arrive. The black dot on the arc labeled b in Figure 1
is called a token and indicates that the OR-join is activated.
As sketched, more tokens can arrive via the other two input
arcs of the OR-join. The token on arc c can travel to f and
the token on arc g can travel to m. Therefore, act cannot be
executed yet. Suppose, that the token on c moves to f. Then
the OR-join still blocks, waiting for the token on arc g. If the
token on g moves to m, act can be executed. Moreover, even
if the token on g moves to k or l (i.e., the token “exits” the
path to the OR-join), then act can be executed. In the latter
case, the OR-join only consumes two tokens because it can
be sure that a third token will not arrive via input arc m.

Because of the tricky non-local semantics, the OR-join is
not supported by most execution languages. Many systems use
a Petri-net-like execution engine not allowing for OR-joins.
Even BPEL engines that support dead path elimination (cf.
[23]) can only handle OR-join behavior in acyclic flow activi-
ties. Engines that provide full support for the OR-join (e.g. the
YAWL engine [2]) may run into performance problems when
there are many non-trivial OR-joins. Due to these reasons,
process models with OR-joins often require substantial rework
before they can be used in workflow systems. Since OR-joins
tend to be included in every third EPC model [24, p.205], this
is a serious limitation. Therefore, it is desirable to automate
the removal of OR-joins for execution.

In this paper, we present a rigorous and automatic approach
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Fig. 1. Non-local semantics of the OR-join



for getting rid of the OR-join in conceptual process models
without changing the semantics. We use EPCs a conceptual
modeling language and Petri nets as an execution language
to illustrate the procedure. However, it must be noted that
the approach is similarly applicable if, for example, BPMN is
used as a conceptual language and BPEL as an implementation
language. In particular, we combine a recent EPC semantics
definition with tools for Petri net synthesis. Our contribu-
tion in this context is the innovative combination of these
complementary theories and the provision of respective tool
support within the ProM framework. Against this background,
the paper is structured as follows. In Section II, we intro-
duce Event-driven Process Chains (EPCs). Furthermore, we
illustrate the calculation of the reachability graph for an EPC
and present its implementation within the ProM framework.
In Section III, we give an overview of Petri net synthesis
and demonstrate how the tool Petrify by Cortadella et al.
[11] is used to build a Petri net from an EPC with OR-joins.
Section IV discusses our approach in the light of related work,
in particular on transformation of process models with OR-
joins. Finally, Section V concludes the paper.

II. EVENT-DRIVEN PROCESS CHAINS (EPCS)

This section uses an example to introduce the EPC notation
and syntax. Then, Section II-C discusses the formalization of
EPC semantics, followed by Section II-D which presents a
ProM plug-in for calculating the reachability graph.

A. Introductory EPC Example

The Event-driven Process Chain (EPC) is a business process
modeling language for the representation of temporal and
logical dependencies of activities in a business process (see
[18]). EPCs offer function type elements to capture activities
of a process and event type elements describing pre-conditions
and post-conditions of functions. Furthermore, there are three
kinds of connector types including AND (symbol ∧), OR
(symbol ∨), and XOR (symbol ×) for the definition of com-
plex routing rules. Connectors have either multiple incoming
and one outgoing arc (join connectors) or one incoming
and multiple outgoing arcs (split connectors). As a syntax
rule, functions and events have to alternate, either directly or
indirectly when they are linked via one or more connectors.
Furthermore, OR- and XOR-splits after events are not allowed,
since events cannot make decisions. Control flow arcs are used
to link these elements.

The informal (or intended) semantics of an EPC can be
described as follows. The AND-split activates all subsequent
branches in concurrency. The XOR-split represents a choice
between one of alternative branches. The OR-split triggers one,
two or up to all of multiple branches based on conditions. In
both cases of the XOR- and OR-split, the activation conditions
are given in events subsequent to the connector. Accordingly,
splits from an event to multiple functions are forbidden with
XOR and OR as the activation conditions do not become clear
in the model. The AND-join waits for all incoming branches
to complete, then it propagates control to the subsequent EPC

loan is 
requested

record loan 
request

request is 
recorded

conduct risk 
assessment

negative risk 
assessment

positive risk 
assessment

requester is 
new client

check client 
assessment

set up loan 
contract

analyze 
requirements

requirements 
are analyzed

loan contract 
is set up

sign loan 
contract

loan contract 
is completed

positive client 
assessment

negative client 
assessment

reject loan 
request

loan request 
is rejected

EPC Symbols

Event

Function

Connectors

Control Flow

offer further 
products

offering 
completed

Fig. 2. EPC for a loan request process [26]

element. The XOR-join merges alternative branches. The OR-
join synchronizes all active incoming branches. This feature is
called non-locality, since the state of all transitive predecessor
nodes has to be considered.

Figure 2 shows an EPC model for a loan request process
as described in Nüttgens and Rump [26]. The start event
loan is requested signals the start of the process and the
precondition to execute the record loan request function. After
the postcondition request is recorded, the process continues
with the function conduct risk assessment after the XOR-join
connector. The subsequent XOR-split connector indicates a
decision. In case of a negative risk assessment, the function
check client assessment is performed. The following second
XOR-split marks another decision: in case of a negative client
assessment, the process ends with a rejection of the loan
request; in case of a positive client assessment the conduct
risk assessment function is executed a second time under
consideration of the positive client assessment. If the risk
assessment is not negative, there is another decision point



to distinguish new clients and existing clients. In case of an
existing client, the set up loan contract function is conducted.
After that, the AND-split indicates that two activities have
to be executed: first, the sign loan contract function, and
second the offer further products function. If the client is
new, the analyze requirements function has to be performed
in addition to setting up the loan contract. The OR-join waits
for both functions to be completed if necessary. If the analyze
requirements function will not be executed in the process, it
continues with the function offer further products immediately,
otherwise it synchronizes the two branches.

B. EPC Syntax

In this section, we define the syntax of EPCs in line with
the previous introduction and the presentation in [24].

Definition II.1. (EPC) A flat EPC = (E,F, P, C, l, A)
consists of four pairwise disjoint and finite sets E, F,C, P ,
a mapping l : C → {and, or, xor}, and a binary relation
A ⊆ (E ∪ F ∪ C) × (E ∪ F ∪ C) such that

– An element of E is called event. E 6= ∅.
– An element of F is called function. F 6= ∅.
– An element of C is called connector.
– The mapping l specifies the type of a connector c ∈ C

as and, or, or xor.
– A defines the control flow as a coherent, directed graph.

An element of A is called an arc. An element of the
union N = E ∪ F ∪ C is called a node.

In order to allow for a more concise characterization of
EPCs, notations are introduced for preset and postset nodes,
for incoming and outgoing arcs, and for various subsets.

Definition II.2. (Preset and Postset of Nodes) Let N be a set
of nodes and A ⊆ N×N a binary relation over N defining the
arcs. For each node n ∈ N , we define •n = {x ∈ N |(x, n) ∈
A} as its preset, and n• = {x ∈ N |(n, x) ∈ A} as its postset.

Definition II.3. (Incoming and Outgoing Arcs) Let N be
a set of nodes and A ⊆ N × N a binary relation over N
defining the arcs. For each node n ∈ N , we define the set of
incoming arcs nin = {(x, n)|x ∈ N ∧ (x, n) ∈ A}, and the
set of outgoing arcs nout = {(n, y)|y ∈ N ∧ (n, y) ∈ A}.

Definition II.4. (Paths and Connector Chains) Let EPC =
(E, F, P, C, l, A) be a flat EPC and a, b ∈ N be two
of its nodes. A path a ↪→ b refers to the existence of
a sequence of EPC nodes n1, . . . , nk ∈ N with a =
n1 and b = nk such that for all i ∈ 1, . . . , k holds:
(n1, n2), . . . , (ni, ni+1), . . . , (nk−1, nk) ∈ A. This includes
the empty path of length zero, i.e., for any node a : a ↪→ a. If
a 6= b ∈ N and n2, . . . , nk−1 ∈ C, the path a

c
↪→ b is called

connector chain. This includes the empty connector chain, i.e.,
a

c
↪→ b if (a, b) ∈ A.

Definition II.5. (Subsets) For any EPC = (E,F, P, C, l, A),
we define the following (implicit) subsets of nodes and arcs:

– Es = {e ∈ E | |•e| = 0 ∧ |e•| = 1} being the set of
start-events,
Eint = {e ∈ E | |•e| = 1 ∧ |e•| = 1} being the set of

intermediate-events, and
Ee = {e ∈ E | |•e| = 1| ∧ e•| = 0} being the set of
end-events.

– J = {c ∈ C | |•c| > 1 and |c•| = 1} as the set of join-
and
S = {c ∈ C | |•c| = 1 and |c•| > 1} as the set of
split-connectors.

– Cand = {c ∈ C | l(c) = and} being the set of and-
connectors,
Cxor = {c ∈ C | l(c) = xor} being the set of xor-
connectors, and
Cor = {c ∈ C | l(c) = or} being the set of or-connectors.

– As = {(x, y) ∈ A | x ∈ Es} as the set of start-arcs,
Aint = {(x, y) ∈ A | x /∈ Es ∧ y /∈ Ee} as the set of
intermediate-arcs, and
Ae = {(x, y) ∈ A | y ∈ Ee} as the set of end-arcs.

Several notions of syntactical correctness have been pro-
posed, see [24]. We use a rather small set of requirements in
order to provide semantics for a large set of EPCs.

Definition II.6. (Syntactically Correct EPC) An EPC =
(E, F, P, C, l, A) is called syntactically correct, if it fulfills
the requirements:

1) EPC is a directed and coherent graph such that
∀n∈N ∃e1∈Es,e2∈Ee e1 ↪→ n ↪→ e2.

2) There is at least one start node and one end node in an
EPC: |Es| ≥ 1 ∧ |Ee| ≥ 1.

3) Events have at most one incoming and one outgoing arc:
∀e∈E |•e| ≤ 1 ∧ |e•| ≤ 1.

4) Functions have exactly one incoming and one outgoing
arcs: ∀f∈F |•f | = 1 ∧ |f•| = 1.

5) Connectors are splits or joins, i.e., ∀c∈C (|•c| = 1 ∧
|c•| ≥ 1) ∨ (|•c| ≥ 1 ∧ |c•| = 1).

In the remainder we assume EPCs to be syntactically
correct.

C. EPC Semantics

Several semantical definitions have been proposed for EPCs,
see Kindler [20] for an overview and a theoretical framework.
In this paper, we use a recent formalization of EPC semantics
as proposed by Mendling and van der Aalst [25], that has some
desirable properties compared to earlier approaches. Still, our
general approach is equally applicable if other formalizations
such as the ones presented in [2], [20] are considered.

The principal idea of the semantics by Mendling and van
der Aalst lends some concepts from Langner, Schneider, and
Wehler [21], and adapts the idea of Boolean nets with true
and false tokens in an appropriate manner. The reachability
graph, that we will formalize later, depends on the state and
the context of an EPC. The state of an EPC is basically an
assignment of positive and negative tokens to the arcs. Positive
tokens signal which functions have to be carried out in the
process, negative tokens indicate which functions are to be
ignored. In order to signal OR-joins that it is not possible to
have a positive token on an incoming branch, we define the



context of an EPC. The context assigns a status of wait or
dead to each arc of an EPC. A wait context indicates that it is
still possible that a positive token might arrive; a dead context
status means that no positive token can arrive anymore. For
example, XOR-splits produce a dead context on those output
branches that are not taken and a wait context on the output
branch that receives a positive token. A dead context at an
input arc is utilized by an OR-join to determine whether it has
to synchronize with further positive tokens or not. In contrast
to Petri nets, we distinguish the terms marking and state.

Definition II.7. (State and Context) For an EPC =
(E, F, C, l, A), the mapping σ : A → {−1, 0, +1} is called
a state of an EPC. The positive token captures the state as
it is observed from outside the process. It is represented by a
black circle. The negative token depicted by a white circle with
a minus on it has a similar semantics as the negative token
in the Boolean nets formalization. Arcs with no state tokens
on them have no circle depicted. Furthermore, the mapping
κ : A → {wait, dead} is called a context of an EPC. A wait
context is represented by a w and a dead context by a d next
to the arc.

Definition II.8. (Marking of an EPC) For a syntactically cor-
rect EPC the mapping m : A → {−1, 0, +1}×{wait, dead}
is called a marking. The set of all markings MEPC of an EPC
is called marking space with MEPC = A × {−1, 0, +1} ×
{wait, dead}. The projection of a given marking m to a subset
of arcs S ⊆ A is referred to as mS . If we refer to the κ-
or the σ-part of m, we write κm and σm, respectively, i.e.,
m(a) = (σm(a), κm(a)).

The propagation of context status and state tokens is ar-
ranged in a four phase cycle: (1) dead context, (2) wait
context, (3) negative token, and (4) positive token propagation.
Whether a node is enabled and how it fires is illustrated in
Figure 3. A formalization of the transitions for each phase is
presented in [24].

1) In the first phase, all dead context information is prop-
agated in the EPC until no new dead context can be
derived.

2) Then, all wait context information is propagated until
no new wait context can be derived. It is necessary to
have two phases (i.e., first the dead context propagation
and then the wait context propagation) in order to avoid
infinite cycles of context changes (see [24]).

3) After that, all negative tokens are propagated until no
negative token can be propagated anymore. This phase
cannot run into an endless loop (see [24]).

4) Finally, one of the enabled nodes is selected and prop-
agates positive tokens leading to a new iteration of the
four phase cycle.

The transition relations of the four phases have been for-
mally defined in [24]. They provide the intermediate results
for calculating the reachability graph.

D. Reachability Graph Calculation

Initial and final markings are the start and end points for
calculating the reachability graph of an EPC. We define the
sets of initial and the final markings similar to the definition
by Rump [28]. An initial marking is an assignment of positive
or negative tokens to all start arcs while all other arcs have no
token, and in a final marking only end arcs may hold positive
tokens.

Definition II.9. (Initial Marking of an EPC) Let EPC =
(E, F,C, l, A) be a syntactically correct EPC and MEPC its
marking space. IEPC ⊆ MEPC is defined as the set of all
possible initial markings, i.e., m ∈ IEPC if and only if 1:
• ∃as∈As σm(as) = +1,
• ∀as∈As

σm(as) ∈ {−1, +1},
• ∀as∈As

κm(as) = wait if σm(as) = +1 and
κm(as) = dead if σm(as) = −1, and

• ∀a∈Aint∪Ae
κm(a) = wait and σm(a) = 0.

Definition II.10. (Final Marking of an EPC) Let EPC =
(E, F,C, l, A) be a syntactically correct EPC and MEPC its
marking space. OEPC ⊆ MEPC is defined as the set of all
possible final markings, i.e., m ∈ OEPC if and only if:
• ∃ae∈Ae σm(ae) = +1, and
• ∀a∈As∪Aint σm(a) ≤ 0.

In this context, a marking m′ is called reachable2 from
another marking m if and only if, after applying the phases
of dead and wait context and negative token propagation on
m, there exists a node n whose firing in the positive token
propagation phase produces m′. This is denoted by m

n→ m′.
The notation m → m′ indicates that there is some n such
that m

n→ m′. Furthermore, we write m1
τ→ mq if there is a

firing sequence τ = n1n2...nq−1 that produces from marking
m1 the new marking mq with m1

n1→ m2,m2
n2→ ...

nq−1→ mq .
If there exists a sequence τ such that m1

τ→ mq, we write
m1

∗→ mq . Accordingly, we define the reachability graph RG
as follows.

Definition II.11. (Reachability Graph of an EPC) Let
EPC = (E, F,C, l, A) be a syntactically correct EPC, N =
E ∪ F ∪ C its set of nodes, and MEPC its marking space.
Then, the reachability graph RG ⊆ MEPC ×N ×MEPC of
an EPC contains the following nodes and transitions:
(i) ∀m∈IEP C m ∈ RG.

(ii) (m,n,m′) ∈ RG if and only if m
n→ m′.

The calculation of RG requires an EPC and a set of initial
markings I ⊆ IEPC as input. For several EPCs from practice,
such a set of initial markings will not be available. In this
case, one can easily calculate the set of all possible initial
markings. Algorithm 1 uses an object-oriented pseudo code
notation to define the calculation. In particular, we assume
that RG is an instance of the class ReachabilityGraph,

1Note that the marking is given in terms of arcs. Intuitively, one
can think of start events holding positive or negative tokens. However, the
corresponding arc will formally represent this token.

2A formalization of reachability is given in [24].
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Algorithm 1 Pseudo code for calculating the reachability graph of an EPC
Require: EPC = (E, F, C, l, A), I ⊆ IEPC

1: RG ← ∅
2: toBePropagated ← I
3: propagated ← ∅
4: while toBePropagated 6= ∅ do
5: currentMarking ← toBePropagated.pop()
6: oldMarking ← currentMarking.clone()
7: currentMarking.propagateDeadContext(EPC)
8: currentMarking.propagateWaitContext(EPC)
9: currentMarking.propagateNegativeTokens(EPC)

10: nodeNewMarking ← currentMarking.propagatePositiveTokens(EPC)
11: propagated.add(oldMarking)
12: for all (node, newMarking) ∈ nodeNewMarkings do
13: RG.add(oldMarking, node, newMarking)
14: if newMarking /∈ propagated then
15: toBePropagated.push(newMarking)
16: end if
17: end for
18: end while
19: return RG

propagated an instances of class Set, and toBePropagated
an instance of class Stack that provides the methods pop()
and push(). Furthermore, currentMarking, oldMarking,
and newMarking are instances of class Marking that
provides the methods clone() to return a new, but
equivalent marking, propagateDeadContext(EPC),
propagateWaitContext(EPC), as well as method
propagateNegativeTokens(EPC) to change the marking
according to the transitions of the respective phase, i.e., to
determine maxd,maxw, and max−1 of the current marking.
Finally, propagatePositiveTokens(EPC) returns a set of
(node,marking) pairs including the node that can fire and
the marking that is reached after the firing.

In lines 1-3, the sets RG and propagated are initialized
with the empty set, and the stack toBePropagated is filled
with all initial markings of the set I . The while loop be-
tween lines 4-18 calculates new markings for the marking
that is on top of the stack toBePropagated. In particular,
currentMarking receives the top marking from the stack
(line 5) and it is cloned into the oldMarking object (line
6). In lines 7-9, the propagations of dead and wait context
and of negative tokens are applied on currentMarking.
Then, in line 10, the pairs of nodes and new markings
that can be reached from the old marking are stored in
the set nodeNewMarking. After that, the old marking
is added to the propagated set (line 11). In lines 12-17,
for each pair of node and new marking, a new transition
(oldMarking, node, newMarking) is added to RG. If a
new marking was not yet propagated, it is pushed on top of
the toBePropagated stack (lines 14-16). Using a stack, the
reachability graph is calculated in a depth-first manner. Finally,
in line 19, RG is returned.

Based on the previous algorithm, we have implemented a
conversion plug-in for the ProM (Process Mining) framework
[7], [15]. This conversion plug-in calculates the reachability
graph of an EPC and displays it as a transition systems.
Figure 4 shows the reachability graph of the example EPC
that is generated by using the plug-in. The densely connected
part looking like a diamond in the center of the reachability
graph stems from two concurrent paths of the EPC after the
AND-split. These paths are eventually synchronized by an OR-
join. This OR-join can be found as the label or14 on two
arcs exiting from the diamond at the bottom. Since ProM can
import a variety of EPC interchange formats, the reachability
graph calculation can be easily used for existing models.

III. PETRI NET SYNTHESIS

In this section, we present the second step of our approach.
In this step, a Petri net is synthesized from the reachability
graph resulting from the first step. To do this we use the
“Theory of Regions” [12], [14], [17]. However, we first
introduce Petri nets in more detail.

A. Petri nets

A Petri net consists of two modeling elements, namely
places and transitions. These elements are the nodes of a
bipartite graph, partitioned into places and transitions. When a
Petri net is represented visually, we draw transitions as boxes
and places as circles. A transition typically corresponds to
either an activity which needs to be executed, or to a “silent”
step that takes care of routing. Places are typically used to
define the preconditions and postconditions of transitions. In
this paper, we do not show the labels of places, since they do
not correspond to active elements of a Petri net.
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Fig. 4. Reachability graph of the EPC for the loan request process
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Fig. 5. Reachability graph of the EPC for the loan request process, showing three of its regions



Transitions and places are connected through directed arcs
in such a way that the places and transitions make up the
partitions in a bipartite graph (no place is connected to a place
and no transition is connected to a transition). The places that
are in the pre-set of a transition are called its input places and
the places in the post-set of a transition its output places.

To denote the state of a process execution the concept of
tokens is used. A token is placed inside a place to show that
a certain condition holds. Each place can contain arbitrarily
many of such tokens. When a transition execution occurs (in
other words, a transition fires), one token is removed from
each of the input places and one token is produced for each
of the output places. Note that this restricts the behavior in
such a way that a transition can only occur when there is at
least one token in each of the input places. The distribution
of tokens over the places is called a state, better known as
marking in Petri net jargon.

B. Theory of Regions

The theory of regions was developed to transform state-
based models, such as transition systems or reachability
graphs, to Petri nets, in such a way that the behavior of the
resulting Petri net exactly corresponds to the original state-
based model. For this purpose, the concept of regions was
introduced in [17], where these regions served as intermediate
objects, between a transition system on the one hand and a
Petri net on the other hand. The process of going from a state-
based model to a Petri net, is called synthesis.

Before we formalize the concept of a region, we first provide
an insight into their meaning using our example of Figure 4.
A region represents a collection of states, such that (1) if a
certain transition a enters the region, then all transitions a enter
the region and (2) if a certain transition b exits a region, then
all transitions b exit the region. Figure 5 shows this concept
using the reachability graph of Figure 4. It shows three regions,
namely:

1) Region 1 contains only one state such that all transitions
record loan request enter the region and all transitions
request is recorded exit the region,

2) Region 2 contains two states such that all transitions
xor9 enter the region and all transitions xor21 and
negative risk assessment exit the region,

3) Region 3 contains five states, such that all transitions
positive risk assessment enter the region and all transi-
tions set up loan contract exit the region. Furthermore,
the transitions requester is new client, analyze require-
ments and requirements are analyzed appear both inside,
as well as outside the region, but they do not cross the
region (i.e. enter or exit the region).

Regions, such as the three examples but also all others,
have a special meaning in the state-based model, i.e., they
show causal dependencies between the transitions. Consider
for example Region 3. From that region, it becomes clear that
after you perform a positive risk assessment, you at some point
perform set up loan contract. However, in the mean time, many
other transitions may occur. Using this type of reasoning, a

collection of regions can be translated into a Petri net which
models the exact behavior of the state-based model.

Definition III.1. (Region) Let TS = (S, Λ,→) be a state-
based model (S is the set of states, Λ the set of transitions and
→ the transition relation, i.e., the labelled transitions between
states).3 We say that R ⊆ S is a region of TS if and only if
for all (p, α, q), (p′, α, q′) ∈→ holds that:

• if p ∈ R and q 6∈ R then p′ ∈ R and q′ 6∈ R, i.e., all
transitions labeled α exit the region, and we say that R
is a pre-region of α,

• if p 6∈ R and q ∈ R then p′ 6∈ R and q′ ∈ R, i.e., all
transitions labeled α enter the region, and we say that R
is a post-region of α.

• if (p ∈ R) = (q ∈ R) then (p′ ∈ R) = (q′ ∈ R), i.e., all
transitions labeled α do not cross the region.

It is easy to see that there are two trivial regions, i.e., ∅ ⊆ S
and S ⊆ S are regions. The collection of all regions of a
transition system TS is called <(TS). A region R ∈ <(TS)
is said to be minimal if and only if for all R′ ⊂ R with
R′ 6= ∅ holds that R′ 6∈ <(TS), i.e., none of its subsets is
also a region. The set of all minimal regions is denoted by
<min(TS). Furthermore, it is important to note that regions
do not depend on one label α, i.e., they always depend on the
entire set of labels in the transition system.

C. Synthesis of EPC Reachability Graph

As we explained before, the intuition behind a region is
that it represents a causal dependency between the transitions
that enter the region and the transitions that exit the region,
and hence for Petri net synthesis, a region corresponds to a
Petri net place and a transition corresponds to a Petri net
transition. Thus, the main idea of the synthesis algorithm is
the following: for each transition t in the state-based model a
transition labelled with t is generated in the Petri net. For each
minimal region ri a place pi is generated4. The flow-relation
of the Petri net is constructed as follows. For each transition
t that enters region ri, there is an edge from t to pi in the
Petri net and for every transition t that exits ri, there is an
edge from pi to t in the Petri net.

The Petri net synthesized from state space generated by the
EPC is given in Figure 6. The incoming place of the transition
request is recorded corresponds to Region 1 in Figure 5.
Region 3 of Figure 5 corresponds to the place between positive
risk assessment and set up loan contract in the Petri net.

The first papers on the Theory of Regions only dealt
with a special class of state-based models called elementary
transition systems [5], [6], [14]. Region 2 of Figure 5 is
an example of a situation that is not allowed in such an
elementary transition system. The state S + 10 has two
outgoing transitions, both labeled xor21. Since they both result
in different states, they cannot represent the same transition,

3Note that any reachability graph defines a state-based model TS.
4By using only minimal regions, the resulting number of places is

minimized.



and the algorithms implemented in Petrify therefore split these
two transitions into xor21 and xor21. 1.

In general, the class of elementary transition systems is
very restricted and the state spaces we derive from our EPCs
only by coincidence fall into the class of elementary transition
systems. Fortunately, in the papers of Cortadella et al. [12],
a method for handling any state-based model was presented.
This approach uses labeled Petri nets, i.e., different transitions
can refer to the same event. For this approach it has been
shown that the reachability graph of the synthesized Petri net
is bisimilar to the initial state-based model.

Petrify has been embedded in our ProM framework. There-
fore, in ProM one can seamlessly convert an EPC into a
reachability graph and then into a Petri net. Moreover, ProM
also allows for the automatic translation of the resulting Petri
net to other notations such as EPCs, YAWL, BPEL, etc.

IV. RELATED WORK

Several researchers and practitioners tried to bridge the gap
between conceptual process modeling and workflow execution
by defining model transformations. In particular, mappings
from EPCs to Petri nets were defined in [1], [9], [13], [21].
The problem of these mappings is that they are only applicable
for different subclasses of EPCs, and that they do not preserve
the behavior in the general case. Our approach builds on an
EPC semantics definition that is not restricted to a subclass.
Furthermore, we use the theory of regions to derive a Petri
net that is bisimilar to the original model. This Petri net can
be deployed with several existing workflow engines.

We refer to [14] and [17] for the synthesis of safe Petri nets
and [6] for more general cases. In these papers, the initial input
describing the behavior of the process is given in the form of
transition systems (where the events are known but the states
are anonymous). Typically, in process mining, the observed
behavior is not complete (as it is in a transition system) and it
is not known, which process executions lead to which states
(black box).

The application of the Theory of Regions in the context of
process mining has been addressed in [3], where the authors
address process mining in a software engineering setting. One
of the challenges faced there is to find state information in
event logs. In [3], the authors propose several ways of doing
so. Furthermore, their approach is implemented in ProM by
making a link between the event logs of ProM and a well-
known tool tailored towards the application of the Theory of
Regions, called Petrify [11].

Finally, it is worth mentioning that regions have been
used in many different settings, e.g., for the synthesis and
verification of asynchronous circuits [10] or for the verification
of security properties [8].

V. CONCLUSIONS

In this paper, we presented an approach to close the gap
between conceptual process models with OR-joins, typically
used in the early design phase, and Petri-net-based workflow
models in the execution phase. This approach builds on an

request is recordedrecord loan request
xor7conduct risk assessmentxor9 xor9._1negative risk assessmentcheck client assessment

xor9._1

xor9

positive client assessment

negative client assessmentreject loan request

xor21._1xor21 and2xor15 requester is new clientanalyze requirementsrequirements are analyzed
positive risk assessmentset up loan contractloan contract is set upand0 or14sign loan contract offer further products

Fig. 6. Petri net for the loan request process

innovative combination of a recent formalization of process
models with OR-joins and the theory of regions for the synthe-
sis of Petri nets. In contrast to related work on transformations
between process models, our approach yields a Petri net that
exactly mimics the behavior of the original model. Although
we used an EPC model as a running example, the approach
is equally applicable for other process modeling languages
that offer OR-joins as, for example, BPMN. Moreover, we
can convert the resulting Petri net to other notations such as
BPEL, EPCs, YAWL, etc.



All of this has been implemented in the context of the ProM
framework, i.e., we have developed (1) a tool to construct
reachability graphs based on EPCs with OR-joins to overcome
many of the semantical problems described in literature, (2)
a tool to convert reachability graphs into Petri nets based on
Petrify, and (3) various conversions to transform Petri nets
into EPCs, BPEL specifications, and YAWL models and vice
versa.

In future research, we aim to provide a more direct mapping
from EPCs to Petri nets based on insights from our approach.
In particular, we want to investigate in how far reduction rules
as defined in [22] can be used for the transformation task.

REFERENCES

[1] W.M.P. van der Aalst. Formalization and Verification of Event-driven
Process Chains. Information and Software Technology, 41(10):639–650,
1999.

[2] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another
Workflow Language. Information Systems, 30(4):245–275, 2005.

[3] W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and
C.W. Günther. Process Mining: A Two-Step Approach using Transition
Systems and Regions. BPM Center Report BPM-06-30, BPMcenter.org,
2006.

[4] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C.K.
Liu, S. Thatte, P. Yendluri, and A. Yiu. Web services business process
execution language version 2.0. wsbpel-specification-draft-01, OASIS,
September 2005.

[5] E. Badouel, L. Bernardinello, and P. Darondeau. The Synthesis Problem
for Elementary Net Systems is NP-complete. Theoretical Computer
Science, 186(1-2):107–134, 1997.

[6] E. Badouel and P. Darondeau. Theory of regions. In W. Reisig and
G. Rozenberg, editors, Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science, pages 529–586. Springer-
Verlag, Berlin, 1998.
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