
Table of Contents

Specifying and Monitoring Service Flows: Making Web Services Process-
Aware . 1

W.M.P. van der Aalst, M. Pesic

Author Index . 45

II

Specifying and Monitoring Service Flows:

Making Web Services Process-Aware

W.M.P. van der Aalst and M. Pesic

Department of Technology Management, Eindhoven University of Technology,
P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl,m.pesic@tm.tue.nl

Abstract. BPEL has emerged as the de-facto standard for implement-
ing processes based on web services while formal languages like Petri nets
have been proposed as an “academic response” allowing for all kinds of
analysis. Although languages such as BPEL and Petri nets can be used
to describe service flows, they both tend to “overspecify” the process and
this does not fit well with the autonomous nature of services. Therefore,
we propose DecSerFlow as a Declarative Service Flow Language. By us-
ing a more declarative style, there is no need to overspecify service flows.
The declarative style also makes DecSerFlow an ideal language for mon-
itoring web services, i.e., using process mining techniques it is possible
to check the conformance of service flows by comparing the DecSerFlow
specification with reality. This can be used to expose services that do not
follow the rules of the game. This is highly relevant given the autonomous
nature of services.

1 Introduction

Web services, an emerging paradigm for architecting and implementing busi-
ness collaborations within and across organizational boundaries, are currently of
interest to both software vendors and scientists [4]. In this paradigm, the func-
tionality provided by business applications is encapsulated within web services:
software components described at a semantic level, which can be invoked by
application programs or by other services through a stack of Internet standards
including HTTP, XML, SOAP [23], WSDL [24] and UDDI [22]. Once deployed,
web services provided by various organizations can be inter-connected in order
to implement business collaborations, leading to composite web services.

Today workflow management systems are readily available [7, 58, 68] and
workflow technology is hidden in many applications, e.g., ERP, CRM, and PDM
systems. However, their application is still limited to specific industries such as
banking and insurance. Since 2000 there has been a growing interest in web
services. This resulted in a stack of Internet standards (HTTP, XML, SOAP,
WSDL, and UDDI) which needed to be complemented by a process layer. Sev-
eral vendors proposed competing languages, e.g., IBM proposed WSFL (Web
Services Flow Language) [57] building on FlowMark/MQSeries and Microsoft

2

proposed XLANG (Web Services for Business Process Design) [84] building on
Biztalk. BPEL [18] emerged as a compromise between both languages.

The Business Process Execution Language for Web Services (BPEL4WS, or
BPEL for short) has become the de-facto standard for implementing processes
based on web services [18]. Systems such as Oracle BPEL Process Manager,
IBM WebSphere Application Server Enterprise, IBM WebSphere Studio Appli-
cation Developer Integration Edition, and Microsoft BizTalk Server 2004 support
BPEL, thus illustrating the practical relevance of this language. Although in-
tended as a language for connecting web services, its application is not limited
to cross-organizational processes. It is expected that in the near future a wide
variety of process-aware information systems [30] will be realized using BPEL.
Whilst being a powerful language, BPEL is difficult to use. Its XML repre-
sentation is very verbose and only readable to the trained eye. It offers many
constructs and typically things can be implemented in many ways, e.g., using
links and the flow construct or using sequences and switches. As a result only
experienced users are able to select the right construct. Several vendors offer
a graphical interface that generates BPEL code. However, the graphical rep-
resentations are a direct reflection of the BPEL code and are not intuitive to
end-users. Therefore, BPEL is closer to classical programming languages than
e.g. the more user-friendly workflow management systems available today.

In discussions, Petri nets [78] and Pi calculus [67] are often mentioned as
two possible formal languages that could serve as a basis for languages such as
BPEL. Some vendors claim that their systems are based on Petri nets or Pi
calculus and other vendors suggest that they do not need a formal language to
base their system on. In essence there are three “camps” in these discussions:
the “Petri net camp”, the “Pi calculus” (or process algebra) camp, and the
“Practitioners camp” (also known as the “No formalism camp”). This was the
reason for starting the “Petri nets and Pi calculus for business processes” working
group [76] in June 2004. More than two years later the debate is still ongoing
and it seems unrealistic that consensus on a single language will be reached.

This chapter will discuss the relation between Petri nets and BPEL and show
that today it is possible to use formal methods in the presence of languages like
BPEL. However, this will only be the starting point for the results presented in
this chapter. First of all, we introduce a new language DecSerFlow. Second, we
show that process mining techniques can be very useful when monitoring web
services.

The language DecSerFlow is a Declarative Service Flow Language, i.e., it is
intended to describe processes in the context of web services. The main motiva-
tion is that languages like BPEL and Petri nets are procedural by nature, i.e.,
rather than specifying “what” needs to happen these languages describe “how”
things need to be done. For example, it is not easy to specify that anything
is allowed as long as the receipt of a particular message is never followed by
the sending of another message of a particular type. DecSerFlow allows for the
specification of the “what” without having to state the “how”. This is similar

3

to the difference between a program and its specification. (For example, one can
specify what an ordered sequence is without specifying an algorithm to do so.)

In a service-oriented architecture a variety of events (e.g., messages being
sent and received) are being logged [6, 73]. This information can be used for
process mining purposes, i.e., based on some event log it is possible to discover
processes or to check conformance [14, 13]. The goal of process discovery is to
build models without a-priori knowledge, i.e., based on sequences of events one
can look for the presence or absence of certain patterns and deduce some process
model from it. For conformance checking there has to be an initial model. One
can think of this model as a “contract” or “specification” and it is interesting to
see whether the parties involved stick to this model. Using conformance checking
it is possible to quantify the fit (fewer deviations result in a better fit) and to
locate “problem areas” where a lot of deviations take place.

In this chapter we will show that there is a clear link between more declara-
tive languages such as DecSerFlow and process mining. In order to do so, it is
important to look at the roles that process specifications can play in the context
of web services [94, 95]:

– DecSerFlow can be used as a global model, i.e., interactions are described
from the viewpoint of an external observer who oversees all interactions be-
tween all services. Such a model is also called a choreography model. Note
that such a global model does not need to be executable. However, the model
is still valuable as it allows for conformance checking, i.e., by observing inter-
actions it is possible to detect deviations from the agreed upon choreography
model. Here DecSerFlow is competing with languages such as the Web Ser-
vices Choreography Description Language (WS-CDL) [54].

– DecSerFlow can be used as a local model, i.e., the model that is used to
specify, implement, or configure a particular service. Here DecSerFlow is
competing with languages such as BPEL [18].

As discussed in [94, 95], it is interesting to link global and local models. Relating
global models (that are produced by analysts to agree on interaction scenarios
from a global perspective) to local models (that are produced during system
design and handed on to implementers) is a powerful way of ensuring that ser-
vices can work together. Although DecSerFlow can be used at both levels, we
will argue that it is particularly useful at the global level. Moreover, we will
show that global models can be used to check conformance using process mining
techniques.

The remainder of this chapter is organized as follows. Section 2 describes the
“classical approach” to processes in web services, i.e., Petri nets and BPEL are
introduced and pointers are given to state-of-the-art mappings between them.
Section 3 first discusses the need for a more declarative language and then intro-
duces the DecSerFlow language. In Section 4 the focus shifts from languages to
the monitoring of services. Finally there is a section on related work (Section 5)
and a conclusion (Section 6).

4

2 Classical Approaches: BPEL and Petri Nets

Before we introduce the DecSerFlow, we focus on two more traditional languages
for the modeling of service flows, i.e., Petri nets and BPEL. Petri nets are more
at the conceptual level and can only serve as a theoretical basis for the modeling
and analysis of service flows. BPEL is emerging as the de-facto standard for
implementing processes based on web services. In this section, we also discuss
the link between Petri nets and BPEL and present two tools: one to map Petri
nets onto BPEL and another to map BPEL onto Petri nets.

2.1 Petri Nets

Petri nets [78] were among the first formalisms to capture the notion of concur-
rency. They combine an intuitive graphical notation with formal semantics and
a wide range of analysis techniques. In recent years they have been applied in
the context of process-aware information systems [30], workflow management [7,
9], and web services [64].

To illustrate the concept of Petri nets we use an example that will be used in
the remainder of this chapter. This example is inspired by electronic bookstores
such as Amazon and Barnes and Noble and taken from [16]. Figure 1 shows a
Petri-net that will be partitioned over four partners: (1) the customer, (2) the
bookstore (e.g., Amazon or Barnes and Noble), (3) the publisher, and (4) the
shipper. As discussed in the introduction, Figure 1 can be considered as a global
model, i.e., interactions are described from the viewpoint of an external observer
who oversees all interactions between all services.

The circles in Figure 1 represent places and the squares represent transitions.
Initially, there is one token in place start and all other places are empty (we
consider one book order in isolation [7]). Transitions are enabled if there is a
token on each of input places. Enabled transitions can fire by removing one
token from each input place and producing one token for each output place. In
Figure 1, transition place c order is enabled. When it fires one token is consumed
and two tokens are produced. In the subsequent state (also called marking)
transition handle c order is enabled. Note that transitions rec acc and rec decl
are not enabled because only one of their input places is marked with a token.

Figure 1 represents an inter-organizational workflow that is initiated by a
customer placing an order (activity place c order). This customer order is sent
to and handled by the bookstore (activity handle c order). The electronic book-
store is a virtual company which has no books in stock. Therefore, the bookstore
transfers the order of the desired book to a publisher (activity place b order).
We will use the term “bookstore order” to refer to the transferred order. The
bookstore order is evaluated by the publisher (activity eval b order) and either
accepted (activity b accept) or rejected (activity b reject). In both cases an appro-
priate signal is sent to the bookstore. If the bookstore receives a negative answer,
it decides (activity decide) to either search for an alternative publisher (activ-
ity alt publ) or to reject the customer order (activity c reject). If the bookstore
searches for an alternative publisher, a new bookstore order is sent to another

5

place_c_order handle_c_order

c_order

handle_c_order

place_b_order

b_order

eval_b_order

b_accept

b_reject

b_decline

rec_decl
c_decline

decide

c_accept

alt_publ

b_confirm

c_confirm

s_request

req_shipment

s_decline

s_confirm

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

book_to_s

book_to_c

notification

ship_info

send_bill

bill

payment

pay

rec_acc

rec_book
rec_bill

handle_payment

c_reject

start

end

Fig. 1. A Petri net describing the process as agreed upon by all four parties (i.e., the
global model).

6

publisher, etc. If the customer receives a negative answer (activity rec decl), then
the workflow terminates. If the bookstore receives a positive answer (activity
c accept), the customer is informed (activity rec acc) and the bookstore contin-
ues processing the customer order. The bookstore sends a request to a shipper
(activity req shipment), the shipper evaluates the request (activity eval s req)
and either accepts (activity s accept) or rejects (activity b reject) the request. If
the bookstore receives a negative answer, it searches for another shipper. This
process is repeated until a shipper accepts. Note that, unlike the unavailability
of the book, the unavailability of a shipper cannot lead to a cancellation of the
order. After a shipper is found, the publisher is informed (activity inform publ),
the publisher prepares the book for shipment (activity prepare b), and the book
is sent from the publisher to the shipper (activity send book). The shipper pre-
pares the shipment to the customer (activity prepare s) and actually ships the
book to the customer (activity ship). The customer receives the book (activity
rec book) and the shipper notifies the bookstore (activity notify). The bookstore
sends the bill to the customer (activity send bill). After receiving both the book
and the bill (activity rec bill), the customer makes a payment (activity pay).
Then the bookstore processes the payment (activity handle payment) and the
inter-organizational workflow terminates.

Fig. 2. Two analysis plug-in of ProM indicate that the Petri net shown in Figure 1
is indeed sound. The top window shows some diagnostics related to soundness. The
bottom window shows part of the state space.

The Petri net shown in Figure 1 is a so-called WF-net (WorkFlow-net) be-
cause it has one input place (start) and one output place (end) and all places
transitions are on a path from start to end. Using tools such as Woflan [88]

7

or ProM [29] we can show that the process is sound [2, 7]. Figure 2 shows a
screenshot of the Woflan plug-in of ProM. Soundness means that each process
instance can terminate without any problems and that all parts of the net can
potentially be activated. Given a state reachable from the marking with just a
token in place start it is always possible to reach the marking with one token
place end. Moreover, from the initial state it is possible to enable any transition
and to mark any place. Using ProM it is possible to prove that the Petri net
shown in Figure 1 is sound, cf. Figure 2.

One can think of the Petri net shown in Figure 1 as the contract between
the customer, the bookstore, the publisher, and the shipper (i.e., global model).
Clearly there are many customers, publishers, and shippers. Therefore, the Petri
net should be considered as the contract between all customers, publishers, and
shippers. However, since we model the processing of an order for a single book,
we can assume, without loss of generality, that only one customer, one publisher,
and at most one shipper (at any time) are involved. Note that Figure 1 abstracts
from a lot of relevant things. However, given the purpose of this chapter we do
not add more details.

Figure 3 shows the same process but now all activities are partitioned over the
four parties involved in the ordering of a book. It shows that each of the parties
is responsible for a part of the process. In terms of web services, we can think
of each of the four large shaded rectangles as a service. The Petri-net fragments
inside these rectangles can be seen as specifications of the corresponding services
(i.e., local models).

It is interesting to point out that in principle multiple shippers could be
involved, i.e., the first shipper may decline and then another shipper is con-
tacted, etc. However, at any point in time, at most one shipper is involved in
each process instance. Another interesting aspect is the correlation between the
various processes of the partners. There may be many instances of the process
shown in area labelled bookstore in Figure 3. However, each instance is unique
and messages passed over the places connecting the bookstore to the other part-
ners refer to a particular process instance. In general it is a non-trivial problem to
correlate messages to process instances. See [6, 73] for a more detailed discussion
on correlation.

We will refer to whole diagram shown in Figure 3 as the choreography or
orchestration model of the four services.

2.2 BPEL

BPEL [18] supports the modeling of two types of processes: executable and ab-
stract processes. An abstract, (not executable) process is a business protocol,
specifying the message exchange behavior between different parties without re-
vealing the internal behavior for any one of them. This abstract process views
the outside world from the perspective of a single organization or (composite)
service. An executable process views the world in a similar manner, however,
things are specified in more detail such that the process becomes executable,
i.e., an executable BPEL process specifies the execution order of a number of

8

place_c_order handle_c_order
c_order

handle_c_order

place_b_order

b_order
eval_b_order

b_accept
b_reject

b_decline

rec_decl
c_decline

decide

c_accept

alt_publ

b_confirm

c_confirm

s_request

req_shipment

s_decline

s_confirm

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

book_to_s

book_to_c

notification

ship_info

send_bill

bill

payment

pay

rec_acc

rec_book
rec_bill

handle_payment

c_reject

customer bookstore

publisher

shipper

start

end

Fig. 3. The process as partitioned over (1) the customer, (2) the bookstore, (3) the
publisher, and (4) the shipper (i.e., four local models and their interconnections).

9

activities constituting the process, the partners involved in the process, the mes-
sages exchanged between these partners, and the fault and exception handling
required in cases of errors and exceptions.

In terms of Figure 3 we can think of abstract BPEL as the language to specify
one service, i.e., describing the desired behavior of a single Petri-net fragment
(e.g., shipper). Executable BPEL on the other hand can be used as the means
to implement the desired behavior.

A BPEL process itself is a kind of flow-chart, where each element in the
process is called an activity. An activity is either a primitive or a structured
activity. The set of primitive activities contains: invoke, invoking an operation
on a web service; receive, waiting for a message from an external source; reply,
replying to an external source; wait, pausing for a specified time; assign, copy-
ing data from one place to another; throw, indicating errors in the execution;
terminate, terminating the entire service instance; and empty, doing nothing.

To enable the presentation of complex structures the following structured
activities are defined: sequence, for defining an execution order; switch, for con-
ditional routing; while, for looping; pick, for race conditions based on timing or
external triggers; flow, for parallel routing; and scope, for grouping activities to
be treated by the same fault-handler. Structured activities can be nested and
combined in arbitrary ways. Within activities executed in parallel the execution
order can further be controlled by the usage of links (sometimes also called con-
trol links, or guarded links), which allows the definition of directed graphs. The
graphs too can be nested but must be acyclic.

As indicated in the introduction, BPEL builds on IBM’s WSFL (Web Services
Flow Language) [57] and Microsoft’s XLANG (Web Services for Business Process
Design) [84] and combines the features of a block structured language inherited
from XLANG with those for directed graphs originating from WSFL. As a result
simple things can be implemented in two ways. For example a sequence can be
realized using the sequence or flow elements (in the latter case links are used to
enforce a particular order on the parallel elements), a choice based on certain
data values can be realized using the switch or flow elements, etc. However, for
certain constructs one is forced to use the block structured part of the language,
e.g., a deferred choice [8] can only be modeled using the pick construct. For
other constructs one is forced to use links, i.e., the more graph-oriented part of
the language, e.g., two parallel processes with a one-way synchronization require
a link inside a flow. In addition, there are very subtle restrictions on the use of
links: “A link MUST NOT cross the boundary of a while activity, a serializable
scope, an event handler or a compensation handler... In addition, a link that
crosses a fault-handler boundary MUST be outbound, that is, it MUST have its
source activity within the fault handler and its target activity within a scope
that encloses the scope associated with the fault handler. Finally, a link MUST
NOT create a control cycle, that is, the source activity must not have the target
activity as a logically preceding activity, where an activity A logically precedes
an activity B if the initiation of B semantically requires the completion of A.
Therefore, directed graphs created by links are always acyclic.” (see page 64

10

in [18]). All of this makes the language complex for end-users. A detailed or
complete description of BPEL is beyond the scope of this chapter. For more
details, the reader is referred to [18] and various web sites such as the web site
of the OASIS technical committee on WS-BPEL [70].

2.3 BPEL2PN and PN2BPEL

As shown, both BPEL and Petri nets can be used to describe the process-aspect
of web services. There are several process engines supporting Petri nets (e.g.,
COSA, YAWL, etc.) or BPEL (e.g., Oracle BPEL, IBM WebSphere, etc.). BPEL
currently has strong industry support while Petri nets offer a graphical language
and a wide variety of analysis tools (cf. Figure 2). Therefore, it is interesting to
look at the relation between two. First of all, it is possible to map BPEL onto
Petri nets for the purpose of analysis. Second, it is possible to generate BPEL
on the basis of Petri nets, i.e., mapping a graphical, more conceptual, language
onto a textual language for execution purposes.

Several tools have been developed to map BPEL onto Petri nets (see Sec-
tion 5). As a example, we briefly describe the combination formed by BPEL2PNML
and WofBPEL developed in close collaboration with QUT [72]. BPEL2PNML
translates BPEL process definitions into Petri nets represented in the Petri Net
Markup Language (PNML). WofBPEL, built using Woflan [88], applies static
analysis and transformation techniques to the output produced by BPEL2PNML.
WofBPEL can be used: (1) to simplify the Petri net produced by BPEL2PNML
by removing unnecessary silent transitions, and (2) to convert the Petri net
into a so-called WorkFlow net (WF-net) which has certain properties that sim-
plify the analysis phase. Although primarily developed for verification purposes,
BPEL2PNML and WofBPEL have also been used for conformance checking us-
ing abstract BPEL processes [6].

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
name="shipper" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://schemas.xmlsoap.org/ws/2003/03/business-
process/ http://schemas.xmlsoap.org/ws/2003/03/business-process/"
targetNamespace="http://shipper">
 <sequence name="Sequence_F3">
 <receive name="eval_s_req" />
 <switch name="Switch_F2">

<case condition="bpws:getVariableData('accept', 'accept', '//type')!=1">
 <invoke name="s_reject" />
</case>
<case condition="bpws:getVariableData('accept', 'accept', '//type')=1">
 <sequence name="Sequence_F1">

 <invoke name="s_accept" />
 <receive name="prepare_s" />
 <invoke name="ship" />
 <invoke name="notify" />

 </sequence>
</case>

 </switch>
</sequence>

</process>

Fig. 4. The Petri net describing the service offered by the shipper is mapped onto
BPEL code using WorkflowNet2BPEL4WS, a tool to automatically translate colored
Petri nets into BPEL template code.

11

Few people have been working on the translation from Petri nets to BPEL. In
fact, [9] is the only work we are aware of that tries to go from (colored) Petri nets
to BPEL. Using our ProM tool [29] we can export a wide variety of languages to
CPN Tools. For example, we can load Petri net models coming from tools such as
Protos, Yasper, and WoPeD, EPCs coming from tools such as ARIS, ARIS PPM,
and EPC Tools, and workflow models coming from tools such as Staffware and
YAWL, and automatically convert the control-flow in these models to Petri nets.
Using our ProM tool this can then be exported to CPN Tools where it is possible
to do further analysis (state space analysis, simulation, etc.). Moreover, WF-nets
in CPN Tools can be converted into BPEL using WorkflowNet2BPEL4WS [9,
55]. To illustrate this, consider the shipper service shown in Figure 3. The WF-
net corresponding to the shipper process was modeled using the graphical editor
of the COSA workflow management system. This was automatically converted
by Woflan to ProM. Using ProM the process was automatically exported to
CPN Tools. Then using WorkflowNet2BPEL4WS the annotated WF-net was
translated into BPEL template code. Figure 4 shows both the annotated WF-
net in CPN Tools (left) and the automatically generated BPEL template code
(right).

The availability of the tools and systems mentioned in this section makes it
possible to support service flows, i.e., the process-aspect of web services, at the
design, analysis, and enactment level. For many applications, BPEL, Petri nets,
or a mixture of both provide a good basis for making web services “process-
aware”. However, as indicated in the introduction, the focus of this chapter is
on DecSerFlow. Section 3 introduces DecSerFlow and shows that it is a truly
declarative language which addresses the problem of overspecification typically
resulting from the procedural languages described in this section. After introduc-
ing the language we focus on the monitoring of service flows (Section 4) specified
in terms of DecSerFlow.

3 DecSerFlow

The goal of this section is to provide a “fresh view” on process support in the
context of web services. We first argue why a more declarative approach is needed
and then introduce a concrete language: DecSerFlow.

3.1 The Need for More Declarative Languages

Petri nets and BPEL have in common that they are highly procedural, i.e., after
the execution of a given activity the next activities are scheduled.1 Seen from
the viewpoint of an execution language the procedural nature of Petri nets and
1 Note that both BPEL and Petri nets support the deferred choice pattern [8], i.e., it is

possible to put the system in a state where several alternative activities are enabled
but the selection is made by the environment (cf. the pick construct in BPEL). This
allows for more flexibility. However, it does not change the fact that in essence both
Petri nets and BPEL are procedural.

12

BPEL is not a problem. However, unlike the modules inside a classical system,
web services tend to be rather autonomous and an important challenge is that
all parties involved need to agree on an overall global process. Currently, terms
like choreography and orchestration are used to refer to the problem of agreeing
on a common process. Some researchers distinguish between choreography and
orchestration, e.g., “In orchestration, there’s someone – the conductor – who tells
everybody in the orchestra what to do and makes sure they all play in sync. In
choreography, every dancer follows a pre-defined plan - everyone independently
of the others.” We will not make this distinction and simply assume that chore-
ographies define collaborations between interacting parties, i.e., the coordination
process of interconnected web services all partners need to agree on. Note that
Figure 3 can be seen as an example of a choreography.

Within the Web Services Choreography Working Group of the W3C, a work-
ing draft defining version 1.0 of the Web Services Choreography Description Lan-
guage (WS-CDL) has been developed [54]. The scope of WS-CDL is defined as
follows: “Using the Web Services Choreography specification, a contract con-
taining a global definition of the common ordering conditions and constraints
under which messages are exchanged, is produced that describes, from a global
viewpoint, the common and complementary observable behavior of all the parties
involved. Each party can then use the global definition to build and test solutions
that conform to it. The global specification is in turn realized by a combination
of the resulting local systems, on the basis of appropriate infrastructure support.
The advantage of a contract based on a global viewpoint as opposed to any one
endpoint is that it separates the overall global process being followed by an in-
dividual business or system within a domain of control (an endpoint) from the
definition of the sequences in which each business or system exchanges informa-
tion with others. This means that, as long as the observable sequences do not
change, the rules and logic followed within a domain of control (endpoint) can
change at will and interoperability is therefore guaranteed.” [54]. This definition
is consistent with the definition of choreography just given. Unfortunately, like
most standards in the web services stack, CDL is verbose and complex. Somehow
the essence as shown in Figure 3 is lost. Moreover, the language again defines
concepts such as “sequence”, “choice”, and “parallel” in some ad-hoc notation
with unclear semantics. This suggests that some parts of the language are an
alternative to BPEL while they are not.

However, the main problem is that WS-CDL, like Petri nets and BPEL, is
not declarative. A choreography should allow for the specification of the “what”
without having to state the “how”. This is similar to the difference between
the implementation of a program and its specification. For example, it is close
to impossible to describe that within a choreography two messages exclude one
another. Note that such an exclusion constraint is not the same as making a
choice! To illustrate this, assume that there are two actions A and B. These
actions can correspond to exchange of messages or some other type of activity
which is relevant for the choreography. The constraint that “A and B exclude
one another” is different from making a choice between A or B. First of all,

13

A and B may be executed multiple times, e.g., the constraint is still satisfied
if A is executed 5 times while B is not executed at all. Second, the moment
of choice is irrelevant for the constraint. Note that the modeling of choices in
a procedural language forces the designer to indicate explicit decision points
which are evaluated at explicit decision times. Therefore, there is a tendency to
overspecify things.

Therefore, we propose a more declarative approach based on temporal logic
[61, 74] as described in the following subsection.

3.2 DecSerFlow: A Declarative Service Flow Language

Languages such as Linear Temporal Logic (LTL) [41, 45, 46] allow for the a more
declarative style of modeling. These languages include temporal operators such
as nexttime (©F), eventually (�F), always (�F), and until (F �G), cf. Table 1.
However, such languages are difficult to read. Therefore, we define a graphical
syntax for the typical constraints encountered in service flows. The combination
of this graphical language and the mapping of this graphical language to LTL
forms the Declarative Service Flow (DecSerFlow) Language. We propose DecSer-
Flow for the specification of a single service, simple service compositions, and
more complex choreographies.

Table 1. Brief explanation of the basic LTL temporal operators.

name notation explanation

nexttime ©F F has to hold at the next state, e.g., [A,F,B,C,D,E],
[A,F,F,F,F,F,B,C,D,E], [F,F,F,F,A,B,C,D,E], etc.

eventually �F F has to hold eventually, e.g., [F,A,B,C,D,E],
[A,B,C,F,D,E], [ABFCDFEF], etc.

always �F F has to always hold, e.g., [F,F,F,F,F,F].
until F � G G holds at the current state or at some future state, and

F has to hold until G holds. When G holds F does not
have to hold any more. Examples are [G,A,B,C,D,E],
[F,G,A,B,C,D,E], [F,F,F,F,G,A,B,C,D,E],
[F,F,F,F,G,A,B,G,F,C,D,E,F,G], etc.

Developing a model in DecSerFlow starts with creating activities. The no-
tion of an activity is like in any other workflow-like language, i.e., an activity
is atomic and corresponds to a logical unit of work. However, the nature of the
relations between activities in DecSerFlow can be quite different than in tradi-
tional procedural workflow languages (like Petri nets and BPEL). For example,
places between activities in a Petri net describe causal dependencies and can be
used specify sequential, parallel, alternative, and iterative routing. Using such
mechanisms it is both possible and necessary to strictly define how the flow
will be executed. We refer to the relations between activities in DecSerFlow as
constraints. Each of the constraints represents a policy (or a business rule). At

14

any point in time during the execution of a service, each constraint evaluates to
true or false. This value can change during the execution. If a constraint has the
value true, the referring policy is fulfilled. If a constraint has the value false, the
policy is violated. The execution of a service is correct (according to the Dec-
SerFlow model) at some point in time if all constraints (from the DecSerFlow
model) evaluate to true. Similarly, a service has completed correctly if at the end
of the execution all constraints evaluate to true. The goal of the execution of
any DecSerFlow model is not to keep the values of all constraints true at all
times during the execution. A constraint which has the value false during the
execution is not considered an error. Consider for example the LTL expression
�(A −→ �B) where A and B are activities, i.e., each execution of A is eventually
followed by B. Initially (before any activity is executed), this LTL expression
evaluates to true. After executing A the LTL expression evaluates to false and
this value remains false until B is executed. This illustrates that a constraints
may be temporarily violated. However, the goal is to end the service execution
in a state where all constraints evaluate to true.

To create constraints in DecSerFlow we use constraint templates. Each con-
straint template consists of a formula written in LTL and a graphical represen-
tation of the formula. An example is the “response constraint” which is denoted
by a special arc connecting two activities A and B. The semantics of such an arc
connecting A and B are given by the LTL expression �(A −→ �B), i.e., any
execution of A is eventually followed by B. We have developed a starting set
of constraint templates and we will use these templates to create a DecSerFlow
model for the electronic bookstore example. This set of templates is inspired by
a collection of specification patterns for model checking and other finite-state
verification tools [32]. Constraint templates define various types of dependen-
cies between activities at an abstract level. Once defined, a template can be
reused to specify constraints between activities in various DecSerFlow models.
It is fairly easy to change, remove and add templates, which makes DecSerFlow
an “open language” that can evolve and be extended according to the demands
from different domains. There are three groups of templates: (1) “existence”, (2)
“relation”, and (3) “negation” templates. Because a template assigns a graphical
representation to an LTL formula, we will refer to such a template as a formula.

Before giving an overview of the initial set of formulas and their notation,
we give a small example explaining the basic idea. Figure 5 shows a DecSerFlow
model consisting of four activities: A, B, C, and D. Each activity is tagged with
a constraint describing to the number of times the activity should be executed,
these are the so-called “existence formulas”. The arc between A and B is an
example of a “relation formula” and corresponds to the LTL expression discussed
before: �(A −→ � B). The connection between C and D denotes another
relation formula: � D −→ � C, i.e., if D is executed at least once, C is also
executed at least once. The connection between A and C denotes a “negation
formula” (the LTL expression �(A) ⇔ ¬(�(B)) is not show in diagram but will

15

A B

C

 [](A => <> B), i.e.,
every A is eventually

followed by B

D

1..*

20..*

0..*

B is executed
twice

<> D, i.e., D is
executed at least once

<>D => <>C, i.e., if D is
executed at least once, C is
also executed at least once.

if A is executed at
least once, C is
never executed
and vice versa.

A can be executed
an arbitrary

number of times

Fig. 5. A DecSerFlow model showing some example notations. (Note that the temporal
operators � and � are denoted as <> and [].)

be explained later). Note that it is not easy to provide a classical procedural
model (e.g., a Petri net) that allows for all behavior modeled Figure 5.

Existence formulas. Figure 6 shows the so-called “existence formulas”. These
formulas define the cardinality of an activity. For example, the first formula
is called existence and its visualization is shown (i.e., the annotation “1..∗”
above the activity). This indicates that A is executed at least once. Formulas
existence2, existence3, and existenceN all specify a lower bound for the number
of occurrences of A. It is also possible to specify an upper bound for the number
of occurrences of A. Formulas absence, absence2, absence3, and absenceN are also
visualized by showing the range, e.g., “0..N” for the requirement absenceN+1.
Similarly, it is possible to specify the exact number of occurrences as shown in
Figure 6, e.g., constraint exactlyN (A : activity) is denoted by an N above the
activity and specifies that A should be executed exactly N times.

Table 2 provides the semantics for each of the notations shown in Fig-
ure 6, i.e., each formula is expressed in terms of an LTL expression. Formula
existence(A : activity) is defined as �(A), i.e., A has to hold eventually which
implies that in any full execution of the process A occurs at least once. Formula
existenceN (A : activity) shows how it is possible to express a lower bound N
for the number of occurrences of A in a recursive manner, i.e., existenceN (A) =
�(A ∧ ©(existenceN−1 (A))). Formula absenceN (A : activity) can be defined as
the inverse of existenceN (A). Together they can be combined to express that
for any full execution, A should be executed a prespecified number N , i.e.,
exactlyN (A) = existenceN (A) ∧ absenceN+1 (A).

Relation formulas. Figure 7 shows the so-called “relations formulas”. While an
“existence formula” describes the cardinality of one activity, a “relation for-
mula” defines relation(s) (dependencies) between multiple activities. Figure 7
only shows binary relationships (i.e., between two activities), however, in Dec-

16

0

A

2..*

A

3..*

A

N..*

A

0..2

A

0..N

A

0..1

A

2

A

N

A

1

A

N..*

A

0..N

A

N

A

A

1..*

existence(A : activity)

existence2(A : activity)

existence3(A : activity)

existence N(A : activity)

absence(A : activity)

absence2(A : activity)

absence3(A : activity)

absence N+1(A : activity)

exactly1(A : activity)

exactly2(A : activity)

exactly N(A : activity)

Fig. 6. Notations for the “existence formulas”.

SerFlow there are also notations involving generalizations to three or more ac-
tivities, e.g., to model an OR-split. For simplicity however, we first focus on the
binary relationships shown in Figure 7. All relation formulas have activities A
and B as parameters and these activities are also shown in the graphical rep-
resentation. The line between the two activities in the graphical representation
is unique for the formula, and reflects the semantics of the relation. The exis-
tence response formula specifies that if activity A is executed, activity B also
has to be executed (at any time, i.e., either before or after activity A is exe-
cuted). According to the co-existence formula, if one of the activities A or B is
executed, the other one has to be executed also. While the first two formulas
do not consider the order of activities, formulas response, precedence and suc-
cession do consider the ordering of activities. Formula response requires that
every time activity A executes, activity B has to be executed after it. Note that
this is a very relaxed relation of response, because B does not have to execute
straight after A, and another A can be executed between the first A and the

17

Table 2. Existence formulas.

name of formula LTL expression

existence(A : activity) �(A)
existence2 (A : activity) �(A ∧ ©(existence(A)))
existence3 (A : activity) �(A ∧ ©(existence2 (A)))

.
existenceN (A : activity) �(A ∧ ©(existenceN−1 (A)))

absence(A : activity) �(¬A)
absence2 (A : activity) ¬existence2 (A)
absence3 (A : activity) ¬existence3 (A)

.
absenceN (A : activity) ¬existenceN (A)

exactly1 (A : activity) existence(A) ∧ absence2 (A)
exactly2 (A : activity) existence2 (A) ∧ absence3 (A)

.
exactlyN (A : activity) existenceN (A) ∧ absenceN+1 (A)

subsequent B. For example, the execution sequence [B,A,A,A,C,B] satisfies the
formula response. The formula precedence requires that activity B is preceded
by activity A, i.e., it specifies that if activity B was executed, it could not have
been executed until activity A was executed. According to this formula, the ex-
ecution sequence [A,C,B,B,A] is correct. The combination of the response and
precedence formulas defines a bi-directional execution order of two activities and
is called succession. In this formula, both response and precedence relations have
to hold between the activities A and B. Thus, this formula specifies that every
activity A has to be followed by an activity B and there has to be an activity
A before every activity B. For example, the execution sequence [A,C,A,B,B]
satisfies the succession formula.

Formulas alternate response, alternate precedence and alternate succession
strengthen the response, precedence and succession formulas, respectively. If
activity B is alternate response of activity A, then after the execution of an
activity A activity B has to be executed and between the execution of each two
activities A at least one activity B has to be executed. In other words, after
activity A there must be an activity B, and before that activity B there cannot
be another activity A. The execution sequence [B,A,C,B,A,B] satisfies the al-
ternate response. Similarly, in the alternate precedence every instance of activity
B has to be preceded by an instance of activity A and the next instance of ac-
tivity B cannot be executed before the next instance of activity A is executed.
According to the alternate precedence, the execution sequence [A,C,B,A,B,A]
is correct. The alternate succession is a combination of the alternate response
and alternate precedence and the sequence [A,C,B,A,B,A,B] would satisfy this
formula.

Even more strict ordering relations are specified by the last three constraints
shown in Figure 7: chain response, chain precedence and chain succession. These
require that the executions of the two activities (A and B) are next to each

18

existence_response(A, B)

co_existence(A, B)

response(A, B)

precedence(A, B)

succession(A, B)

alternate_response(A, B)

alternate_precedence(A, B)

alternate_succession(A, B)

chain_response(A, B)

chain_precedence(A, B)

chain_succession(A, B) BA

A B

BA

A B

A B

BA

A B

A B

A B

A B

A B

Fig. 7. Notations for the “relation formulas”.

other. According to the chain esponse constraint the first activity after activ-
ity A has to be activity B and the execution [B,A,B,C,A,B] would be cor-
rect. The chain precedence formula requires that the activity A is the activity
directly preceding any B and, hence, the sequence [A,B,C,A,B,A] is correct.
Since the chain succession formula is the combination of the chain response and
chain precedence formulas, it requires that activities A and B are always exe-
cuted next to each other. The execution sequence [A,B,C,A,B,A,B] is correct
with respect to this formula.

Table 3 shows the formalization of the “relations formulas” depicted in Fig-
ure 7. existence response(A,B) is specified by �(A) ⇒ �(B) indicating that
some occurrence of A should always imply an occurrence of B either before or
after A. co existence(A,B) means that the existence of one implies the existence
of the other and vice versa, i.e., �(A) ⇔ �(B). response(A,B) is defined as
�(A ⇒ �(B)),. This means that at any point in time where activity A occurs
there should be eventually be an occurrence of B. precedence(A,B) is similar to
response but now looking backwards, i.e., if B occurs at all, then there should
be no occurrence of B before the first occurrence of A. This is formalized as:
�(B) ⇒ ((¬B) � A). Note that we use the � (until) operator here: (¬B) � A

19

Table 3. Relation formulas.

name of formula LTL expression

existence response(A : activity , B : activity) �(A) ⇒ �(B)
co existence(A : activity , B : activity) �(A) ⇔ �(B)

response(A : activity , B : activity) �(A ⇒ �(B))
precedence(A : activity , B : activity) �(B) ⇒ ((¬B) � A)
succession(A : activity , B : activity) response(A, B) ∧ precedence(A, B)

alternate response(A : activity ,B : activity) �(A ⇒ ©((¬A) � B))
alternate precedence(A : activity , B : activity) precedence(A, B) ∧

�(B ⇒ ©(precedence(A, B)))
alternate succession(A : activity ,B : activity) alternate response(A, B) ∧

alternate precedence(A, B)

chain response(A : activity , B : activity) �(A ⇒ ©(B))
chain precedence(A : activity , B : activity) �(©(B) ⇒ A)
chain succession(A : activity , B : activity) �(A ⇔ ©(B))

means that A holds (i.e., occurs) at the current state or at some future state,
and ¬B has to hold until A holds. When A holds ¬B does not have to hold
any more (i.e., B may occur). succession(A,B) is defined by combining both
into: response(A,B) ∧ precedence(A,B). alternate response(A,B) is defined as
�(A ⇒ ©((¬A) � B)), i.e., any occurrence of A implies that in the next state
and onwards no A may occur until a B occurs. In other words, after activity
A there must be an activity B, and before that activity B occurs there can-
not be another activity A. alternate precedence(A,B) is a bit more complicated:
�((B ∧ ©(�(B))) ⇒ ©(A � B)). This implies that at any point in time where
B occurs and at least one other occurrence of B follows, an A should occur be-
fore the second occurrence of B. alternate succession(A,B) combines both into
alternate response(A,B) ∧ alternate precedence(A,B). chain response(A,B) is
defined as �(A ⇒ ©(B)) indicating that any occurrence of A should be directly
followed by B. chain precedence(A,B) is the logical counterpart: �(©(B) ⇒ A).
chain succession(A,B) is defined as �(A ⇔ ©(B)) and specifies that any oc-
currence of A should be directly followed by B and any occurrence of B should
be directly preceded by A.

Negation formulas. Figure 8 shows the “negation formulas”, which are the
negated versions of the “relation formulas”. (Ignore the grouping of constraints
on the right-hand side of Figure 8 for the moment. Later, we will show that
the eight constraints can be reduced to three equivalence classes.) The first two
formulas negate the existence response and co existence formulas. The neg exist-
ence response formula specifies that if activity A is executed activity B must
never be executed (not before nor after activity A). The neg co existence for-
mula applies neg existence response from A to B and from B to A. It is impor-
tant to note that the term “negation” should not be interpreted as the “logical
negation”, e.g., if activity A never occurs, then both existence response(A,B)
and neg existence response(A,B) hold (i.e., one does not exclude the other). The

20

neg_chain_succession(A, B)

neg_chain_precedence(A, B)

neg_chain_response(A, B)

neg_succession(A, B)

neg_precedence(A, B)

neg_response(A, B)

neg_co_existence(A, B)

neg_existence_response(A, B) A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

Fig. 8. Notations for the “negations formulas”.

neg response formula specifies that after the execution of activity A, activity B
cannot be executed any more. According to the formula neg precedence activity B
cannot be preceded by activity A. The last three formulas are negations of formu-
las chain response, chain precedence and chain succession. neg chain response
specifies that A should never be followed directly by B. neg chain precedence
specifies that B should never be preceded directly by A. neg chain succession
combines both neg chain response and neg chain precedence. Note that Figure 8
does not show “negation formulas” for the alternating variants of response, prece-
dence, and succession. The reason is that there is no straightforward and intu-
itive interpretation of the converse of an alternating response, precedence, or
succession.

Table 4 shows the LTL expressions of the notations shown in Figure 8. Ta-
ble 4 also shows that some of the notions are equivalent, i.e., neg co existence and
neg existence response are equivalent and similarly the next two pairs of three
formulas are equivalent. Note that a similar grouping is shown in Figure 8 where a
single representation for each group is suggested. neg existence response(A,B)
is defined as �(A) ⇒ ¬(�(B)). However, since the ordering does not mat-
ter, neg existence response(A,B) = neg existence response(A,B) and hence co-
incides with neg co existence(A,B). neg response(A,B) is defined as �(A ⇒
¬(�(B))), i.e., after any occurrence of A, B may never happen (or formu-
lated alternatively: any occurrence of B should take place before the first A).
neg precedence(A,B) is defined as �(�(B) ⇒ (¬A)), i.e., if B may occur in
some future state, then A cannot occur in the current state. It is easy to see that

21

Table 4. Negation formulas (formulas grouped together are equivalent).

name of formula LTL expression

neg existence response(A : activity ,B : activity) �(A) ⇒ ¬(�(B))
neg co existence(A : activity , B : activity) neg existence response(A, B) ∧

neg existence response(B , A)

neg response(A : activity , B : activity) �(A ⇒ ¬(�(B)))
neg precedence(A : activity , B : activity) �(�(B) ⇒ (¬A))
neg succession(A : activity , B : activity) neg response(A, B) ∧

neg precedence(A, B)

neg chain response(A : activity , B : activity) �(A ⇒ ©(¬(B)))
neg chain precedence(A : activity , B : activity) �(©(B) ⇒ ¬(A))
neg chain succession(A : activity , B : activity) neg chain response(A, B) ∧

neg chain precedence(A, B)

neg precedence(A,B) = neg response(A,B) because both state that no B should
take place after the first A (if any). Since neg succession(A,B) combines both,
also neg succession(A,B) = neg response(A,B). The last three formulas are
negations of formulas chain response, chain precedence and chain succession. It
is easy to see that they are equivalent neg chain response(A,B) = neg chain pre-
cedence(A,B) = neg chain succession(A,B).

Figures 7 and 8 and the corresponding formalizations show only binary re-
lationships. However, these can easily be extended to deal with more activities.
Consider for example the response relationship, i.e., response(A,B) = �(A ⇒
�(B)). This can easily be extended to response(A,B ,C) = �(A ⇒ (�(B) ∨
�(C)), i.e., every occurrence of A is eventually followed by an occurrence of B
or C. This can also be extended to a choice following A of N alternatives, i.e.,
response(A,A1 ,A2 , . . . ,AN) = �(A ⇒ (�(A1) ∨ �(A2) ∨ . . . ∨ �(AN))).
Many of the other formulas can be generalized in a similar fashion and repre-
sented graphically in an intuitive manner. For example, response(A,B ,C), i.e.,
A is eventually followed by an occurrence of B or C, is depicted by multiple
arcs that start from the same dot. Similarly, it is possible to have a precedence
constraint where different arrows end in the same dot indicating that at least
one of the preceding activities should occur before the subsequent activity is
executed.

DecSerFlow is an extendible language, i.e., designers can add their own graph-
ical notations and provide their semantics in terms of LTL. For example, one can
add constraints similar to the control-flow dependencies in classical languages
such as Petri nets, EPCs, etc. and draw diagrams similar to the diagrams pro-
vided by these languages. However, the aim is to have a relatively small set of
intuitive notations. In this chapter we show only a core set. Figure 9 assists in
reading diagrams using this core notation. When extending the language with
new constraints, it is important to use a set of drawing conventions as shown in
Figure 9. For example, a dot connected to some activity A means that “A occurs”
and is always associated to some kind of connection, a line without some arrow
means “occurs at some point in time”, an arrow implies some ordering relation,

22

N..M

A

On top the lower -bound (N) and
upper-bound (M) are spec ified.

A B

The dot shows how to read the constraint,
i.e., it means “suppose that A occurs”.

The type of connection describes the type of constraint (in
this case “existence response”) and should be interpreted
depending on the location of the dot.

If A occurs, then also B should occur (at any
time), i.e.,

A B

Two dots, i.e., read the “existence response” constraint
from both sides, i.e.,

A B

The arrow should be interpreted as “is followed
by” or “is preceded by” (in this case both).

A B

The negation symbol inverses the meaning of the
connection, i.e., in this case “is NOT followed by”
and “is NOT preceded by”.

A

AN

A1

A2

Most of the binary constraints
can be extended to constraints
involving an arbitrary number of
activities.

...

Fig. 9. Explanation of the graphical notation.

two short vertical lines depict a negation, etc. Note that Figure 9 also shows the
response(A,A1 ,A2 , . . . ,AN) constraint described earlier, i.e., A is followed by
at least one of its successors.

3.3 The amazon.com example in DecSerFlow

In this subsection we revisit the amazon.com example to show how DecSerFlow
language can be used to model services. For this purpose, we will model the
customer service using existence, relation and negation formulas. In this way, we
will use the defined templates for formulas, apply them to activities from our
example and thus create real constraints in our DecSerFlow model. In addition to
this model of a single service, we will also show how the communication between
services can be presented with DecSerFlow by modeling the communication of
the customer service with other services. We start by removing all arcs and places
from the example model. This results in an initial DecSerFlow model populated
only by unconnected activities. Next, we create necessary constraints for the
customer. Adding constraints to the rest of the model is straightforward and
easy but not necessary for illustrating the DecSerFlow language.

Figure 10 shows the new model with DecSerFlow constraints for the cus-
tomer. We added existence constraints for all activities which can be seen as
cardinality specifications above activities. Activity place c order has to be exe-
cuted exactly one time. Activities rec acc and rec decl can be executed zero or

23

handle_c_orderhandle_c_order

place_b_order eval_b_order

b_accept
b_rejectdecide

c_accept

alt_publ

req_shipment

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

send_bill

handle_payment

c_reject

customer bookstore

publisher

shipper

re s p
on

s erespo
nse

place_c_order
1

rec_acc
0..1

rec_decl
0..1

pay
0..1

rec_bill
0..1

rec_book
0..1

p
rec e

de
nce

pre
ce

de
nce

pre
ce

d
en

ce

e
xi

st
e

n
ce

_
re

sp
on

se

neg_co_existence

succession

succession

succession

precedence

precedence

succession

precedence

Fig. 10. DecSerFlow model.

24

one time, depending on the reply of the bookstore. Similarly, activities rec book,
rec bill and pay can be executed at most one time.

Every occurrence of place c order is eventually followed by at least one oc-
currence of rec acc or rec decl, as indicated by the non-binary relationship also
shown in Figure 9. However, it is possible that both activities are executed,
and to prevent this we add the neg co existence constraint between activities
rec acc and rec decl. So far, we have managed to make sure that after activ-
ity place c order one of the activities rec acc and rec decl will execute in the
service. One problem remains to be solved – we have to specify that none of
the activities rec acc and rec decl can be executed before activity place c order.
We achieve this by creating two precedence constraints: (1) the one between the
activities place c order and rec acc making sure that activity rec acc can be ex-
ecuted only after activity place c order was executed, and (2) the one between
activities place c order and rec decl making sure that activity rec decl can be
executed only after activity place c order was executed. It is important to note
that the constraints related to place c order, rec acc, and rec decl together form
a “classical choice”. It may seem rather clumsy that four constraints are needed
to model a simple choice. However, (1) the four constraints can be merged into
a single notation and LTL formula that can be re-used in other diagrams and
(2) it is a nice illustration of how procedural languages like Petri nets and BPEL
tend to overspecify things. In fact, in a classical language one would not only im-
plicitly specify four elementary constraints, and, in addition, one would typically
need to specify the data conditions. In DecSerFlow one can add these conditions,
but one does not need to do so, i.e., one can drop any of the four constraints
involving place c order, rec acc, and rec decl and still interpret the resulting set
of constraints in a meaningful way.

The next decision to be made is the dependency between the activities rec acc
and rec book. In the old model we had a clear sequence between these two activ-
ities. However, due to some problems or errors in the bookstore it might happen
that, although the order was accepted (activity rec acc is executed), the book
does not arrive (activity rec book is not executed). However, we assume that the
book will not arrive before the order was accepted. The constraint precedence
between the activities rec acc and rec book specifies that activity rec book can be
executed only after activity rec acc was executed. The old model specified that
the bill arrives after the book. This may not be always true. Since the bill and
the book are shipped by different services through different channels, the order
of their arrival might vary. For example, it might happen that the shipper who
sends the book is closer to the location of the customer and the bookstore is on
another continent, or the other way around. In the first scenario the book will
arrive before the bill, and in the second one the bill will arrive before the book.
Therefore we choose not to create an ordering constraint between the activities
rec book and rec bill. Even more, our DecSerFlow model accepts the error when
the bill arrives even without the book being sent. This could happen in the case
of an error in the bookstore when a declined order was archived as accepted, and
the bill was sent without the shipment of the book. However, we assume that

25

every bookstore that delivers a book, also sends a bill for the book. We specify
this with the existence response constraint between the rec book activity and
the rec bill activity. This constraint forces that if activity rec book is executed,
then activity rec bill must have been executed before or will be executed after
activity rec book. Thus, if the execution of activity rec book exists, then also the
execution of activity rec bill exists. The constraint precedence between the ac-
tivities rec bill and pay means that the customer will only pay after the bill was
received. However, after the bill was received the customer does not necessarily
pay, like in the old model. It might happen that the received book was not the
one that was ordered or it was damaged. In these cases, the customer can decide
not to pay the bill.

Besides for the modeling of a single service, DecSerFlow language can as
well be used to model the communication between services. In Figure 10 we
can see how constraints specify the communication of the customer with the
bookstore and the shipper. First, the succession constraint between activity
place c order and handle c order specifies that after activity place c order activ-
ity handle c order has to be executed, and that activity handle c order can be
executed only after activity place c order. This means that every order of a cus-
tomer will be handled in the bookstore, but the bookstore will handle the order
only after it was placed. The same holds (constraint succession) for the pairs of
activities (c accept, rec acc), (c reject, rec decl) and (pay, handle payment). The
relations between the pairs of activities (ship, rec book) and (send bill, rec bill)
are more relaxed than the previous relations. These two relations are not suc-
cession, but precedence. We can only specify that the book will be received after
it was sent, but we cannot claim that the book that was sent will indeed be
received. It might happen that the shipment is lost or destroyed before the cus-
tomer receives the book. The same holds for the bill. Because of this we create
the two precedence constraints. The first precedence constraint is between activ-
ity ship and rec book to specify that activity rec book can be executed only after
activity ship was executed. The second one is between the activities send bill and
rec bill, according to which activity rec bill can be executed only after activity
send bill was executed.

Figure 10 shows how DecSerFlow language can be used to specify services.
While the old Petri net model specified the strict sequential relations between
activities, with DecSerFlow we were able to create many different relations be-
tween the activities in a more natural way. For the illustration, we developed
constraints only for the customer service and its communication with other ser-
vices, but developing of the rest of the model is as easy and straightforward.

3.4 Mapping DecSerFlow onto Automata

DecSerFlow can be used in many different ways. Like abstract BPEL it can
be used to specify services but now in a more declarative manner. However,
like executable BPEL we can also use it as an execution language. The Dec-
SerFlow language can be used as an execution language because it is based on
LTL expressions. Every constraint in a DecSerFlow model has both a graphical

26

representation and a corresponding parameterized LTL formula. The graphical
notation enables a user-friendly interface and masks the underlying formula. The
formula, written in LTL, captures the semantics of the constraint. The core of a
DecSerFlow model consists of a set of activities and a number of LTL expressions
that should all evaluate to true at the end of the model execution.

Every LTL formula can be translated into an automaton [26]. Algorithms for
translating LTL expressions into automata are given in [40, 92]. The possibility
to translate an LTL expression into an automaton and the algorithms to do so,
have been extensively used in the field of model checking [26]. Moreover, the
initial purpose for developing such algorithms comes from the need to, given a
model, check if certain properties hold in the model. The SPIN tool [50] can be
used for the simulation and exhaustive formal verification of systems, and as a
proof approximation system. SPIN uses an automata theoretic approach for the
automatic verification of systems [86]. To use SPIN, the system first has to be
specified in the verification modelling language Promela (PROcess MEta LAn-
guage) [50]. SPIN can verify the correctness of requirements, which are written
as LTL formulas, in a Promela model using the algorithms presented in [40, 48,
49, 51, 52, 86, 77, 91]. When checking the correctness of an LTL formula, SPIN
first creates an automaton for the negation of the formula. If the intersection of
this automaton and the system model automaton is empty, the model is correct
with respect to the requirement described in LTL. When the system model does
not satisfy the LTL formula, the intersection of the model and the automaton for
the negated formula will not be empty, i.e., this intersection is a counterexample
that shows how the formula is violated. The approach based on the negation of
the formula is quicker, because the SPIN runs verification until the first coun-
terexample is found. In the case of the formula itself, the verifier would have to
check all possible scenarios to prove that a counterexample does not exist.

curse prayresponse bless

Fig. 11. A simple model in DecSerFlow.

Unlike SPIN, which generates an automaton for the negation of the formula,
we can execute a DecSerFlow model by constructing an automaton for the for-
mula itself. We will use a simple DecSerFlow model to show how processes can
be executed by translating LTL formulas into automata. Figure 11 shows a Dec-
SerFlow model with three activities: curse, pray, and bless. The only constraint
in the model is the response constraint between activity curse and activity pray,
i.e., response(curse, pray) = �(curse ⇒ �(pray)). This constraint specifies that
if a person curses, (s)he should eventually pray after this. Note that there is
no restriction on the execution of the activities pray and bless. There are no
existence constraints in this model, because all three activities can be executed
an arbitrary number of times.

27

p2p1 p2

bless

pray pray

curse curse,bless

Fig. 12. Automaton for the formula response.

Using the example depicted in Figure 11, we briefly show the mapping of LTL
formulas onto automata [40], which is used for execution of DecSerFlow models.
Automata consists of states and transitions. By executing activities of DecSer-
Flow model, we fire transitions and thus change state of the related automaton.
Automaton can be in an accepting or not-accepting state. If the automaton is
in an accepting state after executing a certain trace (of DecSerFlow activities),
the trace fulfils the related LTL formula. If the automaton is not in an accepting
state after executing a certain trace, the trace violates the related LTL formula.
Automata created by the algorithm presented in [40] deal with infinite traces
and cannot be used for execution of finite traces like DecSerFlow traces. There-
fore, a variation of this algorithm that enables work with finite traces is used
[41]. A more detailed introduction to automata theory and the creation of Büchi
automata from LTL formulas is out of scope of this article and we refer the
interested reader to [26, 40, 41, 48].

Figure 12 shows a graph representation of the automaton which is generated
for the response constraint [40]2. Automaton states are represented as nodes, and
transitions as edges. An initial state is represented by an incoming edge with
no source node. An accepting state is represented as a node with a double-lined
border. The automaton in Figure 12 has two states: p1 and p2. State p1 is both
the initial and accepting state. Note that such automaton can also be generated
for a DecSerFlow model with multiple constraints, i.e., for more than one LTL
formula, by constructing one big LTL formula as a conjunction of each of the
constraints.

Note that for illustration purposes, we only show a simplified automaton in
Figure 12. Any LTL expression is, actually, translated into a automaton, i.e, a
non-deterministic automaton for infinite words. An automaton is deterministic
if in each state there is exactly one transition for each possible input. In case of a
deterministic automaton, we can simply change the state of the automata when
executing an activity. To check the correctness of the execution, we check if the
current state is an accepting one. In non-deterministic automata, there can be
multiple transitions from a given state for a given possible input. In case of a
DecSerFlow model, the fact that we are dealing with non-deterministic automata

2 Note that the generated automaton is a non-deterministic automaton. For reasons
of simplicity we use a deterministic automaton with the same results.

28

means that executing an activity might transfer an automaton to more that one
next state - a set of possible states. To check the correctness of the execution, we
need to check if the current set of possible states contains at least one accepting
state. Another issue when executing automata for DecSerFlow models is the
fact that we assume that every execution will be completed at some point of
time, i.e., an execution of a DecSerFlow model is a finite one. The original
algorithm for creating automata from LTL expressions generates automata for
infinite words, i.e., for infinite executions [40]. That creates problems because
the criteria for deciding which states are accepting are different for finite and
infinite words. Therefore, we use a modified version of the original algorithm [41],
which was constructed for verification of finite software traces. We use the Java
PathExplorer (JPAX), a runtime verification tool, as a basis [41]. The algorithm
in JPAX assumes that the system will start the execution, and does not consider
empty traces. To allow an empty execution of a DecSerFlow model, we add an
invisible activity init and a constraint initiate that specifies that activity init
has to be executed as the first activity in the model. We automatically execute
activity init at the beginning of the enactment of a DecSerFlow model. Another
small complication is that in the JPAX implementation of [41], the © operator
is slightly weaker (if there is no next step, ©F evaluates to true by definition).
This can be modified easily by redefining ©F to (©F ∧ �F).

The mapping for LTL constraints onto automata allows for the guidance of
people, e.g., it is possible to show whether a constraint is in an accepting state or
not. Moreover, if the automaton of a constraint is not in an accepting state, it is
possible indicate whether it is still possible to reach an accepting state. This way
we can color the constraints green (in accepting state), yellow (accepting state
can still be reached), or red (accepting state cannot be reached anymore). Using
the automaton some engine could even enforce a constraint, i.e., the automaton
could be used to drive a classical workflow engine [7].

3.5 Using DecSerFlow to Relate Global and Local Models

In the first part of the paper we distinguished between global and local models.
In the global model interactions are described from the viewpoint of an external
observer who oversees all interactions between all services. Local models are
used to specify, implement, or configure particular services. Clearly, both types
of models can be represented using DecSerFlow. Moreover, as just shown, it is
possible the construct an automaton to enact a DecSerFlow specification. This
seems particularly relevant for local models. As we will see in the next section,
both global and local models can be used for monitoring services. For example,
given a DecSerFlow specification we can also check whether each party involved
in a choreography actually sticks to the rules agreed upon. The ProM framework
offers the so-called LTL-checker to support this (cf. Section 4.2). However, before
focusing on the monitoring of service flows, we briefly discuss the relevance of
DecSerFlow in relating global and local models.

Using DecSerFlow both global and local models can be mapped onto LTL
expressions and automata. This allows for a wide range of model checking ap-

29

proaches. For example, it is possible to check if the constraints in the local model
are satisfied by the global model and vice versa. Note that the set of activities
in both models does not need to be the same. However, given the logical na-
ture of DecSerFlow this is not a problem. Also note that the different notions
of inheritance of dynamic behavior can be used in this context [2] (e.g., map
activities onto τ actions). The only constraints that seem problematic in this
respect are chained relation formulas, i.e., chain response, chain precedence, and
chain succession. These use the “nexttime” (©F) operator whose interpretation
depends on the context, i.e., from a global perspective an activity in one service
may be followed by an activity in another service thus violating some “nexttime”
constraint. Nevertheless, it seems that the LTL foundation of DecSerFlow offers
a solid basis for comparing global and local models and generating templates for
local models from some partitioned global model.

4 Monitoring Service Flows

DecSerFlow can be used to create both local and global models. As shown in the
previous section, these models can be used to specify a (part of some) service
flow and to enact it. In this section, we show that DecSerFlow can also be used
in the context of monitoring service flows.

In a service-oriented architecture, but also in classical enterprise systems,
a variety of events (e.g., messages being sent and received) are being logged.
This information can be used for process mining purposes, i.e., based on some
event log some knowledge is extracted. In the context of service flows an obvious
starting point is the interception of messages exchanged between the various
services. For example, SOAP messages can be recorded using TCP Tunneling
techniques [6] or, if middleware solutions such as IBM’s Websphere are used,
different events are logged in a structured manner [73]. Although possible, it
is typically not easy to link events (e.g., SOAP messages) to process instances
(cases) and activities. However, as pointed out by many researchers, the problem
of correlating messages needs to be addressed anyway. Hence, in the remainder,
we assume that it is possible to obtain an event log where each event can be
linked to some process instance and some activity identifier.

4.1 Classification of Process Mining

Assuming that we are able to monitor activities and/or messages being ex-
changed, a wide range of process mining techniques comes into reach. Before
we focus on the relation between DecSerFlow and process mining, we provide a
basic classification of process mining approaches. This classification is based on
whether there is an a-priori model (e.g., a DecSerFlow specification) and, if so,
how it is used.

– Discovery: There is no a-priori model, i.e., based on an event log some model
is constructed. For example, using the α algorithm [15] a process model can

30

be discovered based on low-level events. There exist many techniques to
automatically construct process models (e.g., in terms of a Petri net) based
on some event log [15, 17, 27, 28, 89]. Recently, process mining research also
started to target the other perspectives (e.g., data, resources, time, etc.). For
example, the technique described in [11] can be used to construct a social
network.

– Conformance: There is an a-priori model. This model is compared with the
event log and discrepancies between the log and the model are analyzed.
For example, there may be a process model indicating that purchase orders
of more than 1 million euro require two checks. Another example is the
checking of the so-called “four-eyes” principle. Conformance checking may
be used to detect deviations, to locate and explain these deviations, and
to measure the severity of these deviations. An example is the conformance
checker described in [79] which compares the event log with some a-priori
process model expressed in terms of a Petri net.

– Extension: There is an a-priori model. This model is extended with a new
aspect or perspective, i.e., the goal is not to check conformance but to enrich
the model. An example is the extension of a process model with performance
data, i.e., some a-priori process model is used to project the bottlenecks on.
Another example is the decision miner described in [80] which takes an a-
priori process model and analyzes every choice in the process model. For
each choice the event log is consulted to see which information is typically
available the moment the choice is made. Then classical data mining tech-
niques are used to see which data elements influence the choice. As a result,
a decision tree is generated for each choice in the process.

Figure 13 illustrates the classification just given in the context of DecSer-
Flow. The figure shows different web services together realizing a service flow.
A DecSerFlow can be used to specify the whole service flow (global model) or
individual services (local models). As shown in Figure 13, we assume that we are
able to record events which are stored on some event log. Given such an event
log, the three types of process mining (discovery, conformance, and extension)
become possible.

Discovery in the context of DecSerFlow would mean that, based on the event
log, we discover a DecSerFlow model, i.e., by analyzing the log different con-
straints are discovered. For example, if an activity is always followed by another,
this can be easily be deduced from the log. Currently, there exist many process
discovery approaches [15, 17, 27, 28, 89]. Although none of them is tailored to-
wards DecSerFlow, it is easy to modify these to yield a (partial) DecSerFlow
model. Note that ordering relations discovered by the α algorithm [15] can eas-
ily be visualized in DecSerFlow.

Conformance checking requires an a-priori DecSerFlow model, e.g., a global
model showing the overall service flow. This model can easily be compared with
the event logs, i.e., each constraint in the DecSerFlow specification is mapped
onto an LTL expression and it is easy to check whether the LTL expression
holds for a particular process instance. Hence it is possible to classify process

31

web servicesservice flow

DecSerFlow
model

event
logs

specifies
global model

discovery

records
events, e.g.,

via SOAP
messages

specifies/
implements
local model

supports/
controls

extension

conformance

Fig. 13. Overview of the various process mining approaches related to DecSerFlow.

instances into conforming or non-conforming for each constraint. This way it is
possible to show where and how frequent deviations occur. Moreover, the (non-
)conforming process instances can be investigated further using other process
mining techniques, e.g., to discover the typical features of cases that deviate.

The third type of process mining also requires an a-priori DecSerFlow model.
However, now the model is extended with complementary information. For ex-
ample, performance data are projected onto the DecSerFlow model or decision
trees are generated for decision points in the process.

As suggested by Figure 13, DecSerFlow can be used in combination with
various process mining approaches. It is important to note that the autonomous
nature of services, the declarative style of modeling (avoiding any overspecifica-
tion), and process mining fit well together. The autonomous nature of services
allows services to operate relatively independently. In many cases it is not pos-
sible to enforce control. At best one can agree on a way of working (the global
model) and hope that the other parties involved will operate as promised. How-
ever, since it is often not possible to control other services, one can only observe,
detect deviations, and monitor performance.

In the remainder of this section, we discuss some of the features of ProM
[29]: a process mining framework offering plug-ins for discovery, conformance,
and extension.

4.2 Linking DecSerFlow to the ProM LTL Checker

The ProM framework [29] is an open-source infrastructure for process mining
techniques. ProM is available as open source software (under the Common Pub-

32

lic License, CPL) and can be downloaded from [75]. It has been applied to var-
ious real-life processes, ranging from administrative processes and health-care
processes to the logs of complex machines and service processes. ProM is plug-
able, i.e., people can plug-in new pieces of functionality. Some of the plug-ins are
related to model transformations and various forms of model analysis (e.g., veri-
fication of soundness, analysis of deadlocks, invariants, reductions, etc.). Most of
the plug-ins, however, focus on a particular process mining technique. Currently,
there are more than 100 plug-ins of which about half are mining and analysis
plug-ins.

Starting point for ProM are event logs in MXML format. The MXML format
is system-independent and using ProMimport it is possible to extract logs from
a wide variety of systems, i.e., systems based on products such as SAP, People-
soft, Staffware, FLOWer, WebSphere, YAWL, ADEPT, ARIS PPM, Caramba,
InConcert, Oracle BPEL, Outlook, etc. and tailor-made systems. It is also possi-
ble to load and/or save a variety of models, e.g., EPCs (i.e., event-driven process
chains in different formats, e.g., ARIS, ARIS PPM, EPML, and Visio), BPEL
(e.g., Oracle BPEL, Websphere), YAWL, Petri nets (using different formats, e.g.,
PNML, TPN, etc.), CPNs (i.e., colored Petri nets as supported by CPN Tools),
and Protos.

One of the more than 100 plug-ins offered by ProM is the so-called LTL
checker [3]. The LTL checker offers an environment to provide parameters for
predefined parameterized LTL expressions and check these expressions with re-
spect to some event log in MXML format. For each process instance, it is deter-
mined whether the LTL expression holds or not, i.e., given an LTL expression all
process instances are partitioned on two classes: conforming and non-conforming.
We have predefined 60 typical properties one may want to verify using the LTL
checker (e.g., the 4-eyes principle) [3]. These can be used without any knowledge
of the LTL language. In addition the user can define new sets of properties. These
properties may be application specific and may refer to data. Each property is
specified in terms of an LTL expression. Formulas may be parameterized, are
reusable, and carry explanations in HTML format. This way both experts and
novices may use the LTL Checker.

Recall that each model element of the DecSerFlow is mapped onto an LTL
expression. Therefore, it is possible to use the ProM LTL checker to assess the
conformance of a DecSerFlow model in the context of a real log. All notations
defined in figures 6, 7, and 8 map directly onto LTL expressions that can be stored
and loaded into ProM. Currently, we do not yet provide a direct connection
between the DecSerFlow editor and the ProM LTL checker. Hence, it is not yet
possible to visualize violations on the DecSerFlow editor. However, it is clear
that such integration is possible.

4.3 Other Process Mining Techniques in ProM

Clearly, the LTL checker is one of the most relevant plug-ins of ProM in the con-
text of DecSerFlow. However, the LTL checker plug-in is only one of more than
100 plug-ins. In this subsection, we show some other plug-ins relevant for process

33

mining for service flows. First, we show some plug-ins related to process discov-
ery. Then, we show the ProM conformance checker that has been successfully
used in the context of (BPEL) service flows.

The basic idea of process discovery is to derive a model from some event log.
This model is typically a process model. However, there are also techniques to
discover organization models, social networks, and more data-oriented models
such as decision trees. To illustrate the idea of process mining consider the log
shown in Table 5. Such a log could have been obtained by monitoring the SOAP
messages the shipper service in Figure 3 exchanges with it its environment. Note
that we do not show the content of the message. Moreover, we do not show
additional header information (e.g., information about sender and receiver).

Table 5. An event log.

case identifier activity identifier time data

order290166 s request 2006-04-02T08:38:00 ...

order090504 s request 2006-04-03T12:33:00 ...

order290166 s confirm 2006-04-07T23:55:00 ...

order261066 s request 2006-04-15T06:43:00 ...

order160598 s request 2006-04-19T20:13:00 ...

order290166 book to s 2006-05-10T07:31:00 ...

order290166 book to c 2006-05-12T08:43:00 ...

order160598 s confirm 2006-05-20T07:01:00 ...

order210201 s request 2006-05-22T09:20:00 ...

order261066 s confirm 2006-06-08T10:29:00 ...

order290166 notification 2006-06-13T14:44:00 ...

order160598 book to s 2006-06-14T16:56:00 ...

order261066 book to s 2006-07-08T18:01:00 ...

order090504 s decline 2006-07-12T09:00:00 ...

order261066 book to c 2006-08-17T11:22:00 ...

order210201 s decline 2006-08-18T12:38:00 ...

order160598 book to c 2006-08-25T20:42:00 ...

order261066 notification 2006-09-27T09:51:00 ...

order160598 notification 2006-09-30T10:09:00 ...

Using process mining tools such as ProM it is possible to discover a process
model as shown in Figure 14. The figure shows the result of three alternative
process discovery algorithms: (1) the α miner shows the result in terms of a Petri
net, (2) the multi-phase miner shows the result in terms of an EPC, and (3) the
heuristics miner shows the result in terms of a heuristics net.3 They are all able
to discover the shipper service as specified in Figure 3. Note that Figure 14
shows the names of the messages rather than the activities because this is the
information shown in Table 5. Note that the algorithms used in Figure 14 can

3 Note that ProM allows for the mapping from one format to the other if needed.
Figure 14 shows the native format of each of the three plug-ins.

34

easily be modified to generate DecSerFlow models, i.e., constraints imposed by
e.g. a Petri net can be mapped onto DecSerFlow notations.

Fig. 14. The output of three process discovery algorithms supported by ProM when
analyzing the event log shown in Table 5.

For process discovery we do not assume that there is some a-priori model, i.e.,
without any initial bias we try to find the actual process by analyzing some event
log. However, in many applications there is some a-priori model. For example, we
already showed that ProM’s LTL checker can be used to check the conformance
of a DecSerFlow model. However, ProM is not limited to DecSerFlow can can also
be used to check the conformance of a specification in terms of abstract BPEL,
EPC, or Petri nets. To illustrate this, assume that we add an additional process
instance to Table 5 where the notification is sent before the book is shipped to
the customer (i.e., in Figure 3 activity notify takes place before activity ship).

If we assume there is some a-priori model in terms of a Petri net, we can
use the conformance checker plug-in of ProM. Figure 15 shows the result of
this analysis (top-right corner). It shows that the fitness is 0.962 and also high-
lights the part of the model where the deviation occurs (the place connecting
ship/book to c and notify/notification). An event log and Petri net “fit” if the
Petri net can generate each trace in the log. In other words: the Petri net describ-
ing the choreography should be able to “parse” every event sequence observed by
monitoring e.g. SOAP messages. In [79] it is shown that it is possible to quantify
fitness as a measure between 0 and 1. The intuitive meaning is that a fitness
close to 1 means that all observed events can be explained by the model (in the
example about 96 percent). However, the precise meaning is more involved since

35

Fig. 15. Both the conformance checker plug-in and the LTL checker plug-in are able
to detect the deviation.

tokens can remain in the network and not all transactions in the model need to
be logged [79].

Unfortunately, a good fitness only does not imply conformance, e.g., it is easy
to construct Petri nets that are able to parse any event log (corresponding to
a DecSerFlow model without any constraints, i.e., a model described by true).
Although such Petri nets have a fitness of 1 they do not provide meaningful
information. Therefore, we use a second dimension: appropriateness. Appropri-
ateness tries to capture the idea of Occam’s razor, i.e., “one should not increase,
beyond what is necessary, the number of entities required to explain anything”.
Appropriateness tries to answer the following question: “Does the model de-
scribe the observed process in a suitable way?” and can be evaluated from both
a structural and a behavioral perspective. To explain the concept in more detail
it is important to note that there are two extreme models that have a fitness of
1. First of all there is the model that starts with a choice and then has one path
per process instance, i.e., the model simply enumerates all possibilities. This
model is “overfitting” since it is simply another representation of the log, i.e.,
it does not allow for more sequences than those that were observed in the log.
Therefore, it does not offer a better understanding than what can be obtained
by just looking at the aggregated log. Secondly, there is the so called “flower
Petri net” [79] that can parse any log, i.e., there is one state in which all activ-
ities are enabled. This model is “underfitting” since it contains no information
about the ordering of activities. In [79] it is shown that a “good” process model
should somehow be minimal in structure to clearly reflect the described behav-
ior, referred to as structural appropriateness, and minimal in behavior in order

36

to represent as closely as possible what actually takes place, which will be called
behavioral appropriateness. The ProM conformance checker supports both the
notion of fitness and the various notions of appropriateness.

In [6] we have demonstrated that any (abstract) BPEL specification can
automatically be mapped onto a Petri net that can be used for conformance
checking using ProM’s conformance checker.

Figure 15 also shows the LTL checker plug-in while checking the response
property on book to c and notification. This check shows that indeed there is
one process instance where activity notify takes place before activity ship. This
example shows that it is possible to compare a DecSerFlow specification and an
event log and to locate the deviations.

5 Related Work

Since the early nineties, workflow technology has matured [39] and several text-
books have been published, e.g., [7, 30]. Most of the available systems use some
proprietary process modeling language and, even if systems claim to support
some “standard”, there are often all kinds of system-specific extensions and lim-
itations. Petri nets have been used for the modeling of workflows [7, 25, 30] but
also the orchestration of web services [65]. Like most proprietary languages and
standards, Petri nets are highly procedural. This is the reason we introduced the
DecSerFlow language in this chapter.

Several attempts have been made to capture the behavior of BPEL [18] in
some formal way. Some advocate the use of finite state machines [35], others
process algebras [34], and yet others abstract state machines [33] or Petri nets [71,
62, 83, 87]. (See [71] for a more detailed literature review.) For a detailed analysis
of BPEL based on the workflow patterns [8] we refer to [90]. Few researchers have
explored the other direction, e.g., translating (Colored) Petri nets into BPEL [9].

The work presented in this chapter is also related to the choreography lan-
guage “Let’s Dance” [94, 95]. Let’s Dance is a language for modeling service in-
teractions and their flow dependencies. The focus of Let’s Dance is not so much
on the process perspective (although a process modeling notation is added); in-
stead it focuses on interaction patterns and mechanisms. Similar to DecSerFlow
it is positioned as an alternative to the Web Services Choreography Description
Language (WS-CDL) [54].

Clearly, this chapter builds on earlier work on process discovery, i.e., the
extraction of knowledge from event logs (e.g., process models [15, 17, 27, 37, 38,
47] or social networks [12]). For example, the well-known α algorithm [15] can
derive a Petri net from an event log. In [6] we used the conformance checking
techniques described in [79] and implemented in our ProM framework [29] and
applied this approach to SOAP messages generated from Oracle BPEL. The
notion of conformance has also been discussed in the context of security [10],
business alignment [1], and genetic mining [66].

It is impossible to give a complete overview of process mining here. Therefore,
we refer to a special issue of Computers in Industry on process mining [14] and a

37

survey paper [13]. Process mining can be seen in the broader context of Business
(Process) Intelligence (BPI) and Business Activity Monitoring (BAM). In [43,
44, 81] a BPI toolset on top of HP’s Process Manager is described. The BPI
toolset includes a so-called “BPI Process Mining Engine”. In [69] Zur Muehlen
describes the PISA tool which can be used to extract performance metrics from
workflow logs. Similar diagnostics are provided by the ARIS Process Performance
Manager (PPM) [53]. The latter tool is commercially available and a customized
version of PPM is the Staffware Process Monitor (SPM) [85] which is tailored
towards mining Staffware logs.

The need for monitoring web services has been raised by other researchers.
For example, several research groups have been experimenting with adding mon-
itor facilities via SOAP monitors in Axis [19]. [56] introduces an assertion lan-
guage for expressing business rules and a framework to plan and monitor the
execution of these rules. [21] uses a monitoring approach based on BPEL. Mon-
itors are defined as additional services and linked to the original service compo-
sition. Another framework for monitoring the compliance of systems composed
of web-services is proposed in [60]. This approach uses event calculus to specify
requirements. [59] is an approach based on WS-Agreement defining the Crona
framework for the creation and monitoring of agreements. In [42, 31], Dustdar et
al. discuss the concept of web services mining and envision various levels (web
service operations, interactions, and workflows) and approaches. Our approach
fits in their framework and shows that web-services mining is indeed possible.
In [73] a tool named the Web Service Navigator is presented to visualize the
execution of web services based on SOAP messages. The authors use message
sequence diagrams and graph-based representations of the system topology. Note
that also in [5] we suggested to focus less on languages like BPEL and more on
questions related to the monitoring of web services. In [6] we showed that it
is possible to translate abstract BPEL into Petri nets and SOAP messages ex-
changed between services into event logs represented using the MXML format
(i.e., the format used by our process mining tools). As a result we could demon-
strate that it is possible to compare the modeled behavior (in terms of a Petri
net) and the observed behavior (in some event log). We used Oracle BPEL and
demonstrated that it is possible to monitor SOAP messages using TCP Tunnel-
ing technique [6]. This comparison could be used for monitoring deviations and
to analyze the most frequently used parts of the service/choreography.

This chapter discussed the idea of conformance checking by comparing the
observed behavior recorded in logs with some predefined model. This could be
termed “run-time conformance”. However, it is also possible to address the issue
of design-time conformance, i.e., comparing different process models before en-
actment. For example, one could compare a specification in abstract BPEL with
an implementation using executable BPEL. Similarly, one could check at design-
time the compatibility of different services. Here one can use the inheritance
notions [2] explored in the context of workflow management and implemented
in Woflan [88]. Axel Martens et al. [62–64, 82] have explored questions related
to design-time conformance and compatibility using a Petri-net-based approach.

38

For example, [63] focuses on the problem of consistency between executable and
abstract processes and [64] presents an approach where for a given composite ser-
vice the required other services are generated. Also related is [36] were Message
Sequence Charts (MSCs) are compiled into the “Finite State Process” notation
to describe and reason about web service compositions.

6 Conclusion

This chapter focussed on service flows both from the viewpoint of specifica-
tion/enactment and monitoring.

First, we discussed more traditional approaches based on Petri nets and
BPEL. We showed that Petri nets provide a nice graphical representation and a
wide variety of analysis techniques, and mentioned that BPEL has strong indus-
try support making it a viable execution platform. We also showed that there are
mappings from BPEL to Petri net for the purpose of analysis (cf. BPEL2PNML
and WofBPEL [72]). Moreover, it is possible to translate graphical languages
such a Petri nets to BPEL (cf. WorkflowNet2BPEL4WS [55]). Using such tech-
niques it is also possible to translate languages such as EPCs, BPMN, etc. to
BPEL.

Although the first author has been involved in the development of these tools
and these tools are mature enough to be applied in real-life applications, both
Petri nets and BPEL are rather procedural and this does not fit well with the
autonomous nature of services. Therefore, we proposed a new, more declarative
language: DecSerFlow. Although DecSerFlow is graphical, it is grounded in tem-
poral logic. It can be used for the enactment of processes, but it is particularly
suited for the specification of a single service or a complete choreography. In the
last part of this chapter, the focus shifted from languages to process mining. We
showed that the combination of DecSerFlow and process mining (conformance
checking in particular) is useful in the setting of web services. Moreover, we
showed that DecSerFlow can be combined well with the conformance-checking
techniques currently implemented in ProM (cf. the LTL checker plug-in).

DecSerFlow also seems to be an interesting proposal for linking global and
local models. If both the global model (i.e., the view on the process as seen
by some external observer) and one or more local models (i.e., the specification
or implementation of a single service or service composition) are modeled in
DecSerFlow, standard model checking techniques can be used to compare both.

To conclude we would like to mention that all of the presented analysis and
translation tools can be downloaded from various websites: [75] (ProM), [20]
(BPEL2PNML and WofBPEL), and [93] (WorkflowNet2BPEL4WS).

References

1. W.M.P. van der Aalst. Business Alignment: Using Process Mining as a Tool
for Delta Analysis. In J. Grundspenkis and M. Kirikova, editors, Proceedings
of the 5th Workshop on Business Process Modeling, Development and Support

39

(BPMDS’04), volume 2 of Caise’04 Workshops, pages 138–145. Riga Technical
University, Latvia, 2004.

2. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270(1-
2):125–203, 2002.

3. W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining and
Verification of Properties: An Approach based on Temporal Logic. In R. Meers-
man and Z. Tari et al., editors, On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE: OTM Confederated International Confer-
ences, CoopIS, DOA, and ODBASE 2005, volume 3760 of Lecture Notes in Com-
puter Science, pages 130–147. Springer-Verlag, Berlin, 2005.

4. W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Web Service Com-
position Languages: Old Wine in New Bottles? In G. Chroust and C. Hofer,
editors, Proceeding of the 29th EUROMICRO Conference: New Waves in System
Architecture, pages 298–305. IEEE Computer Society, Los Alamitos, CA, 2003.

5. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W. Ver-
beek, and P. Wohed. Life After BPEL? In M. Bravetti, L. Kloul, and G. Zavattaro,
editors, WS-FM 2005, volume 3670 of Lecture Notes in Computer Science, pages
35–50. Springer-Verlag, Berlin, 2005.

6. W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Verbeek.
Choreography Conformance Checking: An Approach based on BPEL and Petri
Nets (extended version). BPM Center Report BPM-05-25, BPMcenter.org, 2005.

7. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT press, Cambridge, MA, 2002.

8. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

9. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen. Let’s Go All the Way:
From Requirements via Colored Workflow Nets to a BPEL Implementation of
a New Bank System Paper. In R. Meersman and Z. Tari et al., editors, On
the Move to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE:
OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2005,
volume 3760 of Lecture Notes in Computer Science, pages 22–39. Springer-Verlag,
Berlin, 2005.

10. W.M.P. van der Aalst and A.K.A. de Medeiros. Process Mining and Security:
Detecting Anomalous Process Executions and Checking Process Conformance. In
N. Busi, R. Gorrieri, and F. Martinelli, editors, Second International Workshop
on Security Issues with Petri Nets and other Computational Models (WISP 2004),
pages 69–84. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa, Italy,
2004.

11. W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549–593, 2005.

12. W.M.P. van der Aalst and M. Song. Mining Social Networks: Uncovering Inter-
action Patterns in Business Processes. In J. Desel, B. Pernici, and M. Weske, edi-
tors, International Conference on Business Process Management (BPM 2004), vol-
ume 3080 of Lecture Notes in Computer Science, pages 244–260. Springer-Verlag,
Berlin, 2004.

13. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

40

14. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

15. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

16. W.M.P. van der Aalst and M. Weske. The P2P approach to Interorganizational
Workflows. In K.R. Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of
the 13th International Conference on Advanced Information Systems Engineering
(CAiSE’01), volume 2068 of Lecture Notes in Computer Science, pages 140–156.
Springer-Verlag, Berlin, 2001.

17. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
pages 469–483, 1998.

18. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Standards proposal by BEA
Systems, International Business Machines Corporation, and Microsoft Corpora-
tion, 2003.

19. Apache Axis, http://ws.apache.org/axis/.
20. BABEL, Expressiveness Comparison and Interchange Facilitation Between Busi-

ness Process Execution Languages, http://www.bpm.fit.qut.edu.au/projects/
babel/tools/.

21. L. Baresi, C. Ghezzi, and S. Guinea. Smart Monitors for Composed Services. In
ICSOC ’04: Proceedings of the 2nd International Conference on Service Oriented
Computing, pages 193–202, New York, NY, USA, 2004. ACM Press.

22. T. Belwood and et al. UDDI Version 3.0. http://uddi.org/pubs/uddi_v3.htm,
2000.

23. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1. http:

//www.w3.org/TR/soap, 2000.
24. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services

Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.
25. P. Chrzastowski-Wachtel. A Top-down Petri Net Based Approach for Dynamic

Workflow Modeling. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske,
editors, International Conference on Business Process Management (BPM 2003),
volume 2678 of Lecture Notes in Computer Science, pages 336–353. Springer-
Verlag, Berlin, 2003.

26. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts and London, UK, 1999.

27. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

28. A. Datta. Automating the Discovery of As-Is Business Process Models: Proba-
bilistic and Algorithmic Approaches. Information Systems Research, 9(3):275–301,
1998.

29. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters,
and W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining
Tool Support. In G. Ciardo and P. Darondeau, editors, Application and Theory
of Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages
444–454. Springer-Verlag, Berlin, 2005.

41

30. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
& Sons, 2005.

31. S. Dustdar, R. Gombotz, and K. Baina. Web Services Interaction Mining. Techni-
cal Report TUV-1841-2004-16, Information Systems Institute, Vienna University
of Technology, Wien, Austria, 2004.

32. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Patterns in Property Specifications
for Finite-State Verification. In ICSE ’99: Proceedings of the 21st international
conference on Software engineering, pages 411–420, Los Alamitos, CA, USA, 1999.
IEEE Computer Society Press.

33. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In D. Beauquier and E. Börger and A. Slissenko, editor, Proc. 12th Interna-
tional Workshop on Abstract State Machines, pages 131–151, Paris, France, March
2005.

34. A. Ferrara. Web services: A process algebra approach. In Proceedings of the 2nd
international conference on Service oriented computing, pages 242–251, New York,
NY, USA, 2004. ACM Press.

35. J.A. Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of BPEL4WS
business collaborations. In K. Bauknecht, M. Bichler, and B. Proll, editors, Pro-
ceedings of the 5th International Conference on Electronic Commerce and Web
Technologies (EC-Web ’04), volume 3182 of Lecture Notes in Computer Science,
pages 79–94, Zaragoza, Spain, August 2004. Springer-Verlag, Berlin.

36. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based Verification of Web
Service Composition. In Proceedings of 18th IEEE International Conference on
Automated Software Engineering (ASE), pages 152–161, Montreal, Canada, Oc-
tober 2003.

37. W. Gaaloul, S. Bhiri, and C. Godart. Discovering Workflow Transactional Be-
havior from Event-Based Log. In R. Meersman, Z. Tari, W.M.P. van der Aalst,
C. Bussler, and A. Gal et al., editors, On the Move to Meaningful Internet Sys-
tems 2004: CoopIS, DOA, and ODBASE: OTM Confederated International Con-
ferences, CoopIS, DOA, and ODBASE 2004, volume 3290 of Lecture Notes in
Computer Science, pages 3–18, 2004.

38. W. Gaaloul and C. Godart. Mining Workflow Recovery from Event Based Logs. In
W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Business
Process Management (BPM 2005), volume 3649, pages 169–185. Springer-Verlag,
Berlin, 2005.

39. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

40. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple On-The-Fly Automatic
Verification of Linear Temporal Logic. In Proceedings of the Fifteenth IFIP WG6.1
International Symposium on Protocol Specification, Testing and Verification XV,
pages 3–18, London, UK, 1996. Chapman & Hall, Ltd.

41. D. Giannakopoulou and K. Havelund. Automata-based verification of temporal
properties on running programs. In ASE ’01: Proceedings of the 16th IEEE in-
ternational conference on Automated software engineering, page 412, Washington,
DC, USA, 2001. IEEE Computer Society.

42. R. Gombotz and S. Dustdar. On Web Services Mining. In M. Castellanos and
T. Weijters, editors, First International Workshop on Business Process Intelli-
gence (BPI’05), pages 58–70, Nancy, France, September 2005.

42

43. D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and M.C. Shan. Business
Process Intelligence. Computers in Industry, 53(3):321–343, 2004.

44. D. Grigori, F. Casati, U. Dayal, and M.C. Shan. Improving Business Process Qual-
ity through Exception Understanding, Prediction, and Prevention. In P. Apers,
P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and R. Snodgrass, ed-
itors, Proceedings of 27th International Conference on Very Large Data Bases
(VLDB’01), pages 159–168. Morgan Kaufmann, 2001.

45. K. Havelund and G. Rosu. Monitoring Programs Using Rewriting. In Proceedings
of the 16th IEEE International Conference on Automated Software Engineering
(ASE’01), pages 135–143. IEEE Computer Society Press, Providence, 2001.

46. K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Pro-
ceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2002), volume 2280 of Lecture Notes
in Computer Science, pages 342–356. Springer-Verlag, Berlin, 2002.

47. J. Herbst. A Machine Learning Approach to Workflow Management. In Pro-
ceedings 11th European Conference on Machine Learning, volume 1810 of Lecture
Notes in Computer Science, pages 183–194. Springer-Verlag, Berlin, 2000.

48. G.J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw. Eng., 23(5):279–
295, 1997.

49. G.J. Holzmann. An Analysis of Bitstate Hashing. Form. Methods Syst. Des.,
13(3):289–307, 1998.

50. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, Massachusetts, USA, 2003.

51. G.J. Holzmann and D. Peled. An Improvement in Formal Verification. In FORTE
1994 Conference, Bern, Switzerland, 1994.

52. G.J. Holzmann, D. Peled, and M. Yannakakis. On nested depth-first search. In The
Spin Verification System, Proceedings of the 2nd Spin Workshop.), pages 23–32.
American Mathematical Society, 1996.

53. IDS Scheer. ARIS Process Performance Manager (ARIS PPM): Measure, Ana-
lyze and Optimize Your Business Process Performance (whitepaper). IDS Scheer,
Saarbruecken, Gemany, http://www.ids-scheer.com, 2002.

54. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, and Y. Lafon. Web Services
Choreography Description Language, Version 1.0. W3C Working Draft 17-12-04,
2004.

55. K.B. Lassen and W.M.P. van der Aalst. WorkflowNet2BPEL4WS: A Tool for
Translating Unstructured Workflow Processes to Readable BPEL. BETA Working
Paper Series, WP 167, Eindhoven University of Technology, Eindhoven, 2006.

56. A. Lazovik, M. Aiello, and M. Papazoglou. Associating Assertions with Business
Processes and Monitoring their Execution. In ICSOC ’04: Proceedings of the
2nd International Conference on Service Oriented Computing, pages 94–104, New
York, NY, USA, 2004. ACM Press.

57. F. Leymann. Web Services Flow Language, Version 1.0, 2001.
58. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.

Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.
59. H. Ludwig, A. Dan, and R. Kearney. Crona: An Architecture and Library for

Creation and Monitoring of WS-agreements. In ICSOC ’04: Proceedings of the
2nd International Conference on Service Oriented Computing, pages 65–74, New
York, NY, USA, 2004. ACM Press.

60. K. Mahbub and G. Spanoudakis. A Framework for Requirents Monitoring of
Service Based Systems. In ICSOC ’04: Proceedings of the 2nd International Con-

43

ference on Service Oriented Computing, pages 84–93, New York, NY, USA, 2004.
ACM Press.

61. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, New York, 1991.

62. A. Martens. Analyzing Web Service Based Business Processes. In M. Cerioli, ed-
itor, Proceedings of the 8th International Conference on Fundamental Approaches
to Software Engineering (FASE 2005), volume 3442 of Lecture Notes in Computer
Science, pages 19–33. Springer-Verlag, Berlin, 2005.

63. A. Martens. Consistency between executable and abstract processes. In Pro-
ceedings of International IEEE Conference on e-Technology, e-Commerce, and
e-Services (EEE’05), pages 60–67. IEEE Computer Society Press, 2005.

64. P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to
the SOA. In Proceedings of the 2nd South-East European Workshop on Formal
Methods 2005 (SEEFM05), Ohrid, Republic of Macedonia, 2005.

65. M. Mecella, F. Parisi-Presicce, and B. Pernici. Modeling E-service Orchestration
through Petri Nets. In Proceedings of the Third International Workshop on Tech-
nologies for E-Services, volume 2644 of Lecture Notes in Computer Science, pages
38–47. Springer-Verlag, Berlin, 2002.

66. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Using Ge-
netic Algorithms to Mine Process Models: Representation, Operators and Results.
BETA Working Paper Series, WP 124, Eindhoven University of Technology, Eind-
hoven, 2004.

67. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

68. M. zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, 2004.

69. M. zur Mühlen and M. Rosemann. Workflow-based Process Monitoring and Con-
trolling - Technical and Organizational Issues. In R. Sprague, editor, Proceedings
of the 33rd Hawaii International Conference on System Science (HICSS-33), pages
1–10. IEEE Computer Society Press, Los Alamitos, California, 2000.

70. OASIS Web Services Business Process Execution Language (WSBPEL) TC, http:
//www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

71. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede,
and H.M.W. Verbeek. Formal Semantics and Analysis of Control Flow in WS-
BPEL. BPM Center Report BPM-05-15, BPMcenter.org, 2005.

72. C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M. Dumas, and A.H.M.
ter Hofstede. WofBPEL: A Tool for Automated Analysis of BPEL Processes. In
B. Benatallah, F. Casati, and P. Traverso, editors, Proceedings of Service-Oriented
Computing (ICSOC 2005), volume 3826 of Lecture Notes in Computer Science,
pages 484–489. Springer-Verlag, Berlin, 2005.

73. W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold, and J.F. Morar. Web
Services Navigator: Visualizing the Execution of Web Services. IBM Systems
Journal, 44(4):821–845, 2005.

74. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Annual Symposium on the Foundations of Computer Science, pages 46–57. IEEE
Computer Society Press, Providence, 1977.

75. Process Mining Home Page, http://www.processmining.org.
76. Process Modelling Group, http://process-modelling-group.org.
77. A. Puri and G.J. Holzmann. A Minimized automaton representation of reachable

states. In Software Tools for Technology Transfer, volume 3. Springer-Verlag,
Berlin, 1993.

44

78. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

79. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812
of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag, Berlin,
2006.

80. A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In S. Dustdar,
J.L. Faideiro, and A. Sheth, editors, International Conference on Business Process
Management (BPM 2006), volume 4102 of Lecture Notes in Computer Science,
pages 420–425. Springer-Verlag, Berlin, 2006.

81. M. Sayal, F. Casati, U. Dayal, and M.C. Shan. Business Process Cockpit. In Pro-
ceedings of 28th International Conference on Very Large Data Bases (VLDB’02),
pages 880–883. Morgan Kaufmann, 2002.

82. B.H. Schlingloff, A. Martens, and K. Schmidt. Modeling and model checking web
services. Electronic Notes in Theoretical Computer Science: Issue on Logic and
Communication in Multi-Agent Systems, 126:3–26, mar 2005.

83. C. Stahl. Transformation von BPEL4WS in Petrinetze (In German). Master’s
thesis, Humboldt University, Berlin, Germany, 2004.

84. S. Thatte. XLANG Web Services for Business Process Design, 2001.

85. TIBCO. TIBCO Staffware Process Monitor (SPM). http://www.tibco.com, 2005.

86. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In In Proceedings of the 1st Symposium on Logic in Computer Science,
pages 322–331, Cambridge, Massachusetts, USA, 1986.

87. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL Processes us-
ing Petri Nets. In D. Marinescu, editor, Proceedings of the Second International
Workshop on Applications of Petri Nets to Coordination, Workflow and Busi-
ness Process Management, pages 59–78. Florida International University, Miami,
Florida, USA, 2005.

88. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. The Computer Journal, 44(4):246–279, 2001.

89. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

90. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis of
Web Services Composition Languages: The Case of BPEL4WS. In I.Y. Song, S.W.
Liddle, T.W. Ling, and P. Scheuermann, editors, 22nd International Conference
on Conceptual Modeling (ER 2003), volume 2813 of Lecture Notes in Computer
Science, pages 200–215. Springer-Verlag, Berlin, 2003.

91. P. Wolper and D. Leroy. Reliable hashing without collision detection. In Proc.
5th Int. Conference on Computer Aided Verification, pages 59–70, 1993.

92. P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about Infinite Computation
Paths. In Proceedings of the 24th IEEE symposium on foundation of cumputer
science, pages 185–194, Tucson, Arizona, November 1983.

93. WorkflowNet2BPEL4WS, http://www.daimi.au.dk/~krell/

WorkflowNet2BPEL4WS/.

94. J.M. Zaha, A. Barros, M. Dumas, and A.H.M. ter Hofstede. Lets Dance: A Lan-
guage for Service Behavior Modeling. QUT ePrints 4468, Faculty of Information
Technology, Queensland University of Technology, 2006.

45

95. J.M. Zaha, M. Dumas, A.H.M. ter Hofstede, A. Barros, and G. Dekker. Service In-
teraction Modeling: Bridging Global and Local Views. QUT ePrints 4032, Faculty
of Information Technology, Queensland University of Technology, 2006.

